
Subspace Clustering of High Dimensional and
Streaming Data

Seminar Multimedia Retrieval and Data Mining

István Sárándi

Data Management and Data Exploration Group
RWTH Aachen University

Germany
istvan.sarandi@rwth-aachen.de

Abstract. High-dimensional and streaming data have become widely
available in recent years. In the meantime, new data mining algorithms
have also been proposed that can efficiently and effectively process these
types of data. In this seminar paper we will discuss the requirements for
these scenarios and look at various algorthmic solutions to the cluster-
ing problem. A particularly active reasearch topic in high-dimensional
data mining is subspace clustering. CLIQUE is a prominent example of
subspace clustering algorithms and the main part of the paper gives a
detailed explanation of its steps. Streaming data can be efficiently pro-
cessed with the microcluster approach. CluStream, DenStream and their
alternatives are also discussed, as well as their applicability together with
CLIQUE. Finally, these combinations of CluStream with CLIQUE and
DenStream with CLIQUE are evaluated on a synthetic and a real dataset
using the SubspaceMOA framework.

1 Introduction

Due to the rapidly increasing amount of high-dimensional and streaming data,
it is becoming more and more important to be able to analyze and make sense of
this kind of data efficiently. Clustering is one of the basic data mining problems
with far-reaching applications and it has been studied extensively in the past (e.g.
see [17] for an introduction). In this paper, we will look at how the clustering
problem can be approached in the context of high-dimensional and streaming
data, what type of new challenges arise and how they can be dealt with.

A common approach in the high-dimensional scenario is subspace clustering,
while streaming data has been successfully analyzed using microcluster-based
algorithms. In a large portion of the paper we will look at CLIQUE, a subspace
clustering algorithm; followed by two microcluster approaches, CluStream and
DenStream. Then we will discuss how these algorithms can be combined with
each other to yield a solution that can operate is high-dimensional and streaming
contexts at the same time. In the rest of the introduction section, we briefly
introduce the clustering problem and the characteristics of high-dimensionality
and streaming.

2 I. Sárándi

1.1 The clustering problem and its applications

According to the definition by Jain et al.[17], clustering is the organization of
a collection of patterns into clusters based on similarity. The motivation for
grouping data into clusters may be to gain new insights about the data (e.g. split
the customer database to previously unknown groups for targeted marketing),
to compress or summarize the data for efficiency (e.g. microcluster approaches
for streaming data) or as a substitute for classification when no ground-truth
labels are available (e.g. some applications in image segmentation).

There is no single formal definition of clustering. One of the challenges in
data clustering is to find a reasonable formalization of the problem itself. A
usual formulation is based on a pairwise similarity or distance function. The
goal is then to find clusters such that objects in the same cluster are similar to
each other, while objects in different clusters are dissimilar. Simple and popular
clustering algorithms based on this idea are k-means[20] and related methods
(k-median, k-medoid etc.).

A different formulation is based on a transitivity principle. Objects that are
dissimilar regarding a pairwise comparison may still be included in the same
cluster, provided that there is a sequence of intermediate objects, each similar
enough to the previous one (pairwise). This enables the detection of clusters of
arbitrary shape. A prominent example for such an algorithm is DBSCAN[10].

Comparison with classification Clustering is sometimes called unsuperwised
classification. Unsuperwised means that the input of the clustering algorithm
are only the data objects themselves. By contrast, supervised classification has
two phases. In the first, so called training phase, the input of the algorithm
also contains the true class to which each data point belongs (labeled data).
The algorithm must learn how the class can be predicted from the data. In the
second, so called test phase, some new, unlabeled data is fed into the algorithm
and it tries to predict the class to which the objects belong. In this paper we
will only discuss unsuperwised clustering.

1.2 High-dimensional data

Computational processing power and storage has exponentially grown in the last
decades and this makes it possible to create huge collections of high-dimensional
data[19]. A notoriously data-intensive field is computational genomics. Other
applications include text mining and analysis of user behavior[19]. To analyze
such data, new data mining methods must be developed that scale well with
the increased data dimensionality and quantity. However, the problem is not
only about computational efficiency. The ideas behind traditional data mining
techniques need to be re-evaluated as well.

In particular, traditional distance measures become meaningless in the pres-
ence of noise in high-dimensional spaces. If we assume independent and iden-
tically distributed (i.i.d.) data points and attribute values, the distances from

Subspace Clustering of High Dimensional and Streaming Data 3

Fig. 1. Illustration of subspace clusters in 2 dimensions[26]

a query point to other points will become indistinguishable with growing di-
mensionality[5]. The i.i.d. assumptions do not hold for clustered data, but since
clusters are usually lower-dimensional, the remaining space can be assumed to
be noisy and i.i.d., resulting in a similar effect: the low-dimensional cluster is hid-
den in the vast high-dimensional space. Global dimensionality reduction (such
as principal component analysis) is not helpful here, since each cluster has its
own relevant subspace. Restricting subspaces to axis-parallel projections is a
better alternative to reduce the dimensionality. Figure 1 shows the principle of
axis-parallel subspace clusters in two dimensions for easy visualization.

This approach works because we know that the attributes in the dataset are
not arbitrary directions in the high-dimensional space. We can assume that, in
reality, many attribute groups are highly independent from other attributes and
thus the true clusters will tend to use only some of the attributes. Thus we can
avoid the irrelevant dimensions’ contribution to noise[23].

Looking for clusters in oblique projections (e.g. arbitrary linear combinations
of the dimensions) would be problematic in many ways. It needs more computa-
tional power, it can result in more false positives (out of the infinite possibilities
to construct oblique projections in high dimensional data, many spurious clusters
would emerge by chance), and such projections are hard to interpret.

Kriegel et al. survey high-dimensional clustering algorithms in a systematic
way[19]. The two basic types of problem formulations and algorithms are sub-
space clustering and projected clustering. In the former, a data object may be
contained in multiple clusters, while the latter partitions the dataset to clusters
without overlap. This seminar report is centered around CLIQUE[3], a subspace
clustering algorithm based on a regular grid subdivision of the data space and
testing it in the context of stream clustering. A detailed description is given in
Section 2.

4 I. Sárándi

1.3 Streaming data

Communication networks have also seen important developments in recent years.
Increased data transmittion speed and connectivity allows to continuously send
large volumes of data, such as measurements from sensor networks. Such con-
tinuously flowing data is referred to as streaming data. Intelligent analysis of
streaming data must cope with new requirements. Gaber[11] and Gaber et al.[12]
give a review of what these requirements are and what developments have taken
place.

Dealing with streaming data is more than “just” efficiently processing large
volumes of incoming data. The characteristics of the data stream evolve over
time. The user is most interested in the current characteristics, so older parts of
the data become gradually less relevant. The user may also want to explicitly
analyze the temporal evolution of the data distribution (e.g. movement, growth,
merger or splitting of clusters).

Restricting analysis to recent samples can be done by windowing. Such al-
gorithms are ADWIN and ADWIN2 (’adaptive windowing’) that adaptively set
the window length to cover samples since the last major change in data dis-
tribution[6]. Other approaches use a tilted (weighted) time-window (e.g. HP-
Stream[2]) or sample the data, storing more samples for recent data and less for
older data (e.g. Clusmaster [9]). All these are types of aging techniques.

Ideally, we would incrementally update the results of our complex mining
algorithms after the arrival of every new object (adjusted with aging), to reflect
the current distribution and structure of the data stream. Unfortunately, this is
computationally infeasible. Therefore a two-phase approach was introduced by
Aggarwal et al.[1]. In the online phase, we incrementally maintain some reduced
amount of information that is most crucial to determine the current character-
istics of the data distribution. To reduce memory requirements, we need to do
this at a coarser granularity than individual samples. A popular solution is to
summarize data points into microclusters and to store only incrementally updat-
able statistics about them. Then, in the offline phase, the computationally more
intensive clustering algorithm (e.g. CLIQUE) is used on these microclusters.

Such microclustering approaches are CluStream[1] and DenStream[7]. They
can be used together with any offline clustering algorithm, although the authors
suggest using k-means and DBSCAN in their respective papers. Section 3 gives
more details about CluStream and DenStream.

D-Stream[8], introduced by Chen et al., is also a two-phase stream mining
algorithm. It is based on a grid subdivision of the data space and stores in-
formation about how the number of objects in each cell evolves over time. In
contrast to CluStream and DenStream, D-Stream has its own offline algorithm
that relies on internal state of grid cells. Hence, without major modifications to
its framework, it is not usable with custom offline algorithms, and therefore we
will not discuss it further in this paper.

Subspace Clustering of High Dimensional and Streaming Data 5

1.4 Structure of the paper

Section 2 will introduce CLIQUE and explain its steps in details with clear pseu-
docodes. At the end of the section, CLIQUE is compared with newer subspace
algorithms. Section 3 discusses the microcluster algorithms CluStream and Den-
Stream. In Section 4, we will evaluate CLIQUE in combination with CluStream
and DenStream on a real and a synthetic dataset.

2 The CLIQUE algorithm

CLIQUE[3] is a popular subspace clustering algorithm proposed by Agrawal et
al. It was developed to fulfil the following requirements:

i) Effective treatment of high-dimensionality: As discussed in the intro-
duction, high-dimensional datasets do not have meaningful clusters in the
whole data space. For this reason, CLIQUE looks for clusters in subspaces.

ii) Interpretability of results: Clustering is used in a variety of scenarios.
CLIQUE’s scenario is exploratory analysis, i.e. a human user wants to gain
insight about the structure of the data. One way of making data easy to
interpret is visualization, but it is only effective up to 3 or 4 dimensions.
CLIQUE solves interpretability by restricting subspaces to axis-parallel pro-
jections, excluding oblique projections. The authors note that even a linear
combination of two attributes would create a concept that users can not
interpret.

iii) Scalability: The algorithm should be fast and scale to large databases and
high-dimensionality. This is achieved by a clever way of searching through
subspaces.

iv) Usability: The result should be independent of the order of the input data
objects and it should not be assumed that they were generated according to
some special distribution (e.g. Gaussian). In particular, CLIQUE can return
arbitrary shaped clusters.

An informal overview of CLIQUE is the following. We subdivide the input
space with a regular grid by partitioning each dimension to ξ equal-length inter-
vals. Then, in each subspace, we look for grid units (cells) that contain at least τ
data objects (these are called dense units). A cluster is a collection of connected
dense units that lie in the same subspace. After clusters are found, we generate
short DNF descriptions for them. Thus CLIQUE has three main steps:

1) Finding dense units in subspaces: efficient Apriori-like bottom-up search
on the subspace lattice with heuristic pruning

2) Forming clusters: connected component labeling by depth-first search
3) Generating short DNF descriptions for clusters: greedy growth of

hyperrectangles followed by greedy redundancy elimination

As we can see, CLIQUE uses several, largely unrelated heuristic components
to do clustering. After this intuitive description, let us consider the task and
terminology more formally. We will build upon the notions of Agrawal et al. but
also extend it to more detailed notation.

6 I. Sárándi

2.1 Formal definitions

A dimension (or attribute) A is a named range of real numbers

A = (A.name, [A.min,A.max]).

Let A = {A1, ..., AD} be the dimensions in our D-dimensional input dataset.
The input space is

V = [A1.min,A1.max]× ...× [AD.min,AD.max].

A subspace is defined as a set of dimension indices, so the set of subspaces is
S = 2{1,...,D}. The set of k-dimensional subspaces is denoted by

Sk =
{
S ∈ S

∣∣ |S| = k
}

The set of N input data objects is

V = {v1, ...,vN} ⊂ V.

Each dimension A ∈ A is discretized to ξ equal, non-overlapping intervals. The
size of each interval (bin) is A.step = (A.max − A.min)/ξ. The resulting dis-
cretized grid for a k-dimensional subspace is

Gk = {0, ..., ξ − 1}k .

The full grid is GD. A unit (or subspace cell) is defined by its subspace and its
coordinates in the subspace grid, so the set of k-dimensional units is:

Uk = Sk × Gk.

The coordinates are always specified in the order of ascending dimension indices.
The selectivity of a unit is defined as the number of data objects contained in
it:

sel(u) =
∣∣{v ∈ V ∣∣ contains(u,v)

}∣∣ ,
where contains means for a unit u = ({d1, ..., dk} , (gd1 , ..., gdk))

contains(u,v) ⇐⇒ ∀i ∈ {1, ..., k} :

⌊
vdi −Adi .min
Adi .step

⌋
= gdi (1)

A unit is dense iff sel(u) ≥ τ . A cluster is a pair of a subspace and a set of
grid coordinates, representing a maximal set of connected dense units in that
subspace. In a k-dimensional subspace S = {d1, ..., dk}, a cluster has the form
C = (S,G), G ⊆ Gk. Such a pair C is a cluster iff all of the following hold:

∀g ∈ G : sel((S,g)) ≥ τ

∀g,g′ ∈ G : connected((S,g), (S,g′))

6 ∃g ∈ G,g′ ∈ Gk \G : connected((S,g), (S,g′)),

Subspace Clustering of High Dimensional and Streaming Data 7

where connected is the transitive closure of the has-common-face relation
among dense units. For two units u = (S, (gd1 , ..., gdk)) and u′ = (S, (g′d1 , ..., g

′
dk

))

hasCommonFace(u, u′) ⇐⇒ ∃i ∈ S :
(
|gi − g′i| = 1 ∧ ∀j ∈ S \ {i} : gj = g′j

)
(2)

A k-dimensional hyperrectangular region with upper and lower bound co-
ordinates min,max ∈ Gk is denoted as

Rect(min,max) =
{
g ∈ Gk

∣∣ ∀i ∈ {1, ..., k} : mini ≤ gi ≤ maxi
}

A covering for a cluster C = (S,G) is a set of hyperrectangular regions
R = {R1, ..., Rm} such that

m⋃
i=1

Ri = G

Finally the goal of CLIQUE can be stated precisely. The algorithm should
find all clusters C = (S,G) in the input data, and provide a (small) covering for
each.

Let us now examine each of the three main steps of CLIQUE in more detail.
We will also see a number of pseudocode fragments for the parts of the algorithm
that are not clarified exactly in Agrawal et al.’s paper.

2.2 Finding dense units in subspaces

The efficient bottom-up search is based on the monotonicity lemma: If a k-
dimensional unit is dense, then all its (k − 1)-dimensional projection units are
also dense. It is obviously true, since a projection contains all objects of the
original unit and possibly more, so it must also surpass the τ threshold. Thus, if
we already know the dense units in the (k − 1)-dimensional subspaces, we only
need to examine a reduced number of k-dimensional units. This principle results
in an iterative algorithm beginning with finding 1-dimensional subspaces and
increasing the dimensionality stepwise (Alg. 1).

We find 1-dimensional dense units by building a histogram for each dimension
during a single pass over the whole database.

Now suppose that all (k − 1)-dimensional dense units have been determined
and we want to find dense units in k-dimensional subspaces. Any dense units in
such a subspace S = {d1, ..., dk}, (d1 < ... < dk) must have dense projections
in all (k − 1)-dimensional subspaces S′ ⊂ S. There are k such subspaces, so
the monotonicity lemma yields k constraints. A naive solution would enumerate
all units in S and check if all k constraints are satisfied for them. CLIQUE
uses a much faster way: we first explicitly generate all k-dimensional units that
satisfy two of their k constraints and then check each generated unit for the
remaining k − 2 constraints. The two constraints correspond to the subspaces
S′1 = {d1, ..., dk−2, dk−1} and S′2 = {d1, ..., dk−2, dk}.

In the generation procedure (Alg. 2), we look for pairs of (k−1)-dimensional
dense units (Alg. 2, Line 3) that share their first k − 2 dimensions but not the

8 I. Sárándi

Fig. 2. Subspace lattice. The solid red arrows show which subspaces are used in the
Join procedure to create the candidate dense units.

(k − 1)th and furthermore, their values along the first k − 2 dimensions are
identical as well (Alg. 2, Line 6). Each such pair of dense units is then combined
to yield a k-dimensional candidate that certainly satisfies two of its constraints,
since two of its projections are the units from which it was combined. Then
the remaining constraints are also checked and if any of them is violated, the
candidate is discarded (Alg. 1, Line 9). The surviving candidate units are then
checked for their selectivity in a single pass through the data (Alg. 1, Line 25),
where for each candidate unit we count how many times data objects fall into
them. Units whose counters reach the threshold τ are exactly the dense units
in k-dimensional subspaces. Figure 2 illustrates which subspaces are joined to
create higher-dimensional candidates in a toy example of 4 dimensions.

This algorithm would still have exponential runtime in the highest dimen-
sionality of any dense unit, rendering it infeasible for high-dimensional data.
Therefore, the authors of CLIQUE came up with a heuristic speedup, which
at the same time makes the algorithm no longer exact (i.e. some dense units
may be missed). Before generating k-dimensional dense unit candidates from
the (k − 1)-dimensional dense units, the (k − 1)-dimensional dense units that
lie in ’uninteresting’ subspaces are pruned (Alg. 3, called in Alg. 1 at Line 34).
To decide which subspaces are uninteresting, the coverage is calculated for each
subspace, defined as the number of data objects that lie in some dense unit of
the given subspace.

cov(S) =
{
v ∈ V

∣∣ ∃g : sel((S,g)) ≥ τ ∧ contains((S,g),v)
}

The larger the coverage, the more likely it is that there are dense units in
its superspaces. This is only a heuristic measure, other measures could also be
invented.

Although not stated in the paper, the coverage of a subspace S has the
useful property that it is equal to the sum of the selectivities of the dense units
in subspace S.

Subspace Clustering of High Dimensional and Streaming Data 9

Algorithm 1 Apriori-like bottom-up algorithm for finding dense units

1: function FindDenseUnits
2: make one pass over V and build a histogram histi for each dimension Ai

3: Den1 ←
{

({i} , (g))
∣∣ histi[g] ≥ τ

}
4: // dense units in 1D

5: for k ← 2; k ≤ D; k ← k + 1 do
6: Cand ← Join(Denk−1)
7: // See Alg. 2

8: // check all projections to (k − 1) dimensions
9: for all (S,g) ∈ Cand do

10: (d1, ..., dk) ← sorted(S)
11: for all d ∈ {d1, ..., dk−2} do
12: uproj ← (S \ d, (g1, ..., gd−1, gd+1, ..., gk))
13: if uproj 6∈ Denk−1 then
14: // u has a non-dense projection
15: Cand ← Cand \ u
16: continue loop of line 9
17: end if
18: end for
19: end for

20: for all u ∈ Cand do
21: selectivity[u] ← 0
22: // initialize frequency counters for candidate cells
23: end for

24: for all v ∈ V do
25: // pass over the data
26: for all u ∈ Cand do
27: if contains(u,v) then
28: // See Eq. 1 for the definition of contains
29: selectivity[u] ← selectivity[u] + 1
30: end if
31: end for
32: end for

33: Denk ←
{
u
∣∣ selectivity[u] ≥ τ

}
34: Denk ← PruneMDL(Denk, selectivity)
35: // See Alg. 3
36: if |Denk| < 2 then
37: break
38: end if
39: end for

40: return
⋃D

k=1Denk

41: end function

10 I. Sárándi

Algorithm 2 Algorithm for creating dense unit candidates

1: function Join(Denk−1)
2: Cand ← ∅
3: for all ((S,g), (S′,g′)) ∈ Denk−1 ×Denk−1 do
4: (d1, ..., dk−1) ← sorted(S)
5: (d′1, ..., d

′
k−1) ← sorted(S′)

6: if (∀i ∈ {1, ..., k − 2} : di = d′i ∧ gi = g′i) ∧ dk−1 < d′k−1 then

7: // if same projection to the subspace of their first (k − 2) dimensions
8: c ← (S ∪ S′, (g1, ..., gk−2, gk−1, g

′
k−1))

9: Cand ← Cand ∪ {c}
10: end if
11: end for

12: return Cand
13: end function

cov(S) =
∑

u∈
{
(S,g)

∣∣sel((S,g))≥τ} sel(u)

Hence, coverages can be computed without an additional database scan, since
the selectivities have been computed prior to pruning.

Subspaces are sorted according to decreasing coverage, yielding S1, ..., Sn.
We choose a cutting point i and keep the subspaces {S1, ..., Si} = σkeep while
{Si + 1, ..., Sn} = σprune are pruned (discarded). The cutting point is deter-
mined by a minimum description length (MDL) scheme. We aim to minimize
the number of bits that would be required to store the following:

i) Mean of the coverage values of kept subspaces (rounded up to the next
integer):

µkeep(i) =

⌈∑i
j=1 cov(Sj)

i

⌉
ii) Same for pruned subspaces:

µprune(i) =

⌈∑i
j=i+1 cov(Sj)

n− i

⌉
iii) In-group absolute deviations

|cov(Sj)− µkeep(i)| ∀j ∈ {1, ..., i}
|cov(Sj)− µprune(i)| ∀j ∈ {i+ 1, ..., n}

The number of bits required is the sum of the base-two logarithms, denoted
by CL(i) (for ’code length’). Each possible i is evaluated and the one with
minimum CL(i) is chosen.

Subspace Clustering of High Dimensional and Streaming Data 11

CL(i) = log2 µkeep(i) +

i∑
j=1

log2 |cov(Sj)− µkeep(i)|+

log2 µprune(i) +

n∑
j=i+1

log2 |cov(Sj)− µprune(i)| ,

Algorithm 3 Pruning of dense units for efficiency

1: function PruneMDL(Den, selectivity)
2: σ ←

{
S
∣∣ ∃g : (S,g) ∈ Den

}
3: for all S ∈ σ do
4: cov[S] ←

∑
(S,g)∈Den selectivity[(S,g)]

5: // Sum of selectivities of dense units
6: end for

7: n ← |σ|
8: (S1, ..., Sn) ← sort σ by cov[.] to descending order
9: i∗ ← arg min1<i<n CL(i)

10: Den′ ←
{

(S,g) ∈ Den
∣∣ S ∈ {S1, ..., Si∗}

}
11: return Den′

12: end function

By this modification of the bottom-up algorithm, we get a feasible method
to determine the dense units (or at least most of them, if the heuristic works
well). The next step is to find connected dense units in each subspace to form
clusters.

2.3 Forming clusters

Having determined the dense units, now we need to unite them to form clusters.
This is done separately in each subspace S, in which we have found some dense
units. We perform connected component labeling by depth first search (DFS)
in the following graph: nodes are the dense units found in S and two nodes are
connected by an edge if their corresponding units have a common face (see Eq.
2 about the “has common face” relation).

2.4 Generating short DNF descriptions for clusters

Now we have determined which sets of dense units form clusters. In the last step,
we take each cluster and generate a short definition for it to make the results
easier to interpret. CLIQUE uses disjunctive normal form (DNF) expressions
to generate a description for each cluster. A disjunctive normal form is the

12 I. Sárándi

Fig. 3. Illustration of the greedy covering procedure (from [3])

OR-connection of AND-clauses, e.g. (A ∧ B ∧ C) ∨ (D ∧ E) ∨ (F ∧G ∧H) is a
DNF expression. Boolean variables denoted by letters in this example correspond
to attribute comparisions (e.g. shoeSize < 44) in the CLIQUE ouput. Each
clause represents one hyperrectangular region and the union of the regions covers
exactly the units of the cluster. The goal is to generate a short description, that
is, use as few hyperrectangles (clauses) as possible but still cover all units of the
cluster and no others.

This is a variant of the set cover problem and it is known to be NP-hard.
Therefore the authors of CLIQUE propose a greedy heuristic algorithm to create
a practical solution. An initial unit is picked and a region is grown greedily
around it to maximal size along each dimension. This is repeated until all units
of the cluster are covered (Alg. 4 and Fig. 3).

This procedure may end up with redundant regions, whose units are all cov-
ered by some other regions. To eliminate these redundancies, Agrawal et al.
propose a greedy removal heuristic. We sort the regions according to the num-
ber of contained units and successively remove redundant regions (Alg. 5).

The resulting covering can be trivially converted to a DNF expression. The
description of the algorithm is now complete, we have determined the subspace
clusters and the corresponding DNF descriptions.

2.5 Comparison with related algorithms

There has been considerable research interest in subspace clustering during the
time since 1998, when CLIQUE first appeared. Several shortcomings of CLIQUE
have since been improved in newer algorithms. MAFIA[13] uses an adaptively
spaced grid for subdivision, based on the distribution of the data. This reduces
the required number of units, since large homogeneous regions are stored in a
single block. Because of this speedup, the MDL-based pruning of subspaces is
no longer required in MAFIA. Furthermore, CLIQUE may miss the edges of

Subspace Clustering of High Dimensional and Streaming Data 13

Algorithm 4 The greedy region covering algorithm

1: function GreedyCover(C)
2: (S,G) ← C
3: uncovered ← G
4: R ← ∅
5: while uncovered 6= ∅ do
6: pick g ∈ uncovered
7: R ← Rect(min : g,max : g)
8: for all d ∈ S in random order do
9: R.mind ← min

{
x
∣∣ ∀g′ ∈ Rect(R.min[d← x], R.max) : g′ ∈ G

}
10: R.maxd ← max

{
x
∣∣ ∀g′ ∈ Rect(R.min,R.max[d← x]) : g′ ∈ G

}
11: end for
12: uncovered ← uncovered \R
13: R ← R∪ {R}
14: end while
15: return R
16: end function

Algorithm 5 The greedy redundancy elimination algorithm

1: function GreedyEliminateRedundancy(R)
2: for all R ∈ R in ascending order by size do
3: if ∀g ∈ R : ∃R′ ∈ R \ {R} : g ∈ R′ then
4: R ← R \ {R}
5: end if
6: end for
7: return R
8: end function

14 I. Sárándi

clusters, since the grid might cross them in an unfortunate way. MAFIA doesn’t
have this issue, since the grid moves adaptively to the border of the cluster.

SCHISM[24] extends CLIQUE by varying the threshold τ (selectivity re-
quired for a dense unit) depending on subspace dimensionality. The rationale
is that higher-dimensional units have a lower probability of attaining high-
density, since there are exponentially more units for increasing dimensionalty.
The threshold is derived using a combination of statistical hypothesis testing
and the Chernoff–Hoeffding Bound theorem.

CLIQUE has an additional issue, that for each high-dimensional cluster con-
taining data points V in subspace S, some superset V ′ ⊃ V will also form
a cluster in every possible projected subspace S′ ⊂ S. In short, the clusters
contain redundant information. The so called non-redundant subspace cluster-
ing algorithms have been developed to address this problem (e.g. INSCY[4],
RESCU[22], OSCLU[14] and STATPC[21]).

SUBCLU[18] was proposed based on DBSCAN and using its principles of
density-connectivity. Similar to CLIQUE, it also uses an Apriori-like bottom-up
search on the subspace lattice, but it uses no grid subdivision. The lack of grid
makes SUBCLU more accurate but much slower than CLIQUE.

3 Microcluster approaches

As explained in the introduction, streaming data is becoming important. To
apply CLIQUE in such a scenario, the two-phase approach can be used with
microclustering in the online phase.

3.1 CluStream

In this section we will discuss the CluStream algorithm for microcluster man-
agement.

In CluStream[1], each incoming data object v ∈ V is added to a microclus-
ter by updating the summary statistics stored in it. Note that the data object
itself is discarded! A fixed number of q microclusters are used and the statistics
maintained for each microcluster are the following:

i) N : number of data objects that were merged into the microcluster.

ii) LSd =
∑N
i=1 vi,d ∀d ∈ {1, ..., D} (linear sum)

iii) SSd =
∑N
i=1 v

2
i,d ∀d ∈ {1, ..., D} (squared sum)

iv) LST =
∑N
i=1 ti (linear sum of the timestamps)

v) SST =
∑N
i=1 t

2
i (squared sum of the timestamps)

vi) (ids: list of identifiers of previous clusters that were unified into this one, as
we will see later.)

Since each of the statistics are sums over the contained data objects, they
can be incrementally updated. We can compute derived statistics from these
values, such as mean (µ) and variance (σ). By storing information about the

Subspace Clustering of High Dimensional and Streaming Data 15

Algorithm 6 Online part of the CluStream algorithm

1: procedure CluStreamOnline(InitNumber, q, α,m, δ)
2: // Initialize microclusters
3: M ← OfflineCluster(first InitNumber samples from the stream)
4: for each new sample v with timestamp t do
5: M∗ ← arg minM∈M dist(v, µ(M))
6: if dist(v, µ(M∗)) ≤ ασ(M∗) then
7: update statistics of M∗ by adding v
8: else
9: Mnew ← new microcluster containing v

10: for all M ∈M do
11: // relevance stamp is at the m

2N(M)
th percentile of the timestamps

12: tr[M] = µtime(M) + σtime(M) · Φ−1
(

m
2N(M)

)
13: end for
14: Moldest ← arg minM∈M tr[M]
15: if tr[Moldest] ≤ δ then
16: M ←M\ {Mold}
17: else
18: merge the two M1,M2 ∈M with minimal dist(µ(M1), µ(M2))
19: end if
20: M ←M∪ {Mnew}
21: end if
22: end for
23: end procedure

16 I. Sárándi

timestamps, we can delete old microclusters that are no longer relevant. The
sketch of the algorithm is given in Algorithm 6.

This online algorithm is constantly running. At regular time intervals, snap-
shots are saved containing all the statistics stored for the q microclusters at the
given time. These snapshots are stored in a data structure called the pyramidal
time frame. It stores less of the old snapshots and more of the recent ones. It
guarantees that if we want to retrieve a snapshot of time t at current time tc,
there will be a stored snapshot in the interval [t − β · (tc − t), t], where β de-
pends on parameterization. The data structure requires O(β−1 log(T)) memory
to store T snapshots. Accuracy and memory requirement can be improved on
the cost of the other.

The offline algorithm is executed at user request. We only want to consider
recent samples. Therefore, the contribution of old samples must be removed from
the current microclusters. This is done by first retrieving a microclustering snap-
shot at some defined time in the past t = tc − t0. Assume that the pyramidal
time frame returns a snapshot at time t′ ≤ t. Then we look for microclusters
in the old snapshot that survived to the current time (possibly merged). This
can be done using the ids list, which is unified at each merger. Since the micro-
cluster statistics are additive, simple subtraction will give the information about
samples since t′. These subtracted statistics give rise to a new set of “recent”
microclusters that describe the data since t′.

Next, the recent microclusters are used as input to an offline clustering algo-
rithm. The algorithm needs to be adapted to work with microclusters instead of
data objects. For example, k-means would need adjustment at the mean com-
putations, to take into account the different number of data objects contained
in each microcluster.

3.2 DenStream

Cao et al. proposed another microclustering algorithm, called DenStream[7].
Similar to CluStream, this approach also uses summary statistics, but in Den-
Stream they are time-weighted. Exponential weight decay is applied, due to its
temporal multiplicity property. Another difference is that DenStream uses mul-
tiple kinds of microclusters: c-microclusters (core), p-microclusters (potential
core) and o-microclusters (outlier). Only p- and o-microclusters are maintained
in the online phase. The maintained statistics for each microcluster are:

i) N t =
∑N
i=1 w(ti, tcurrent) (sum of time-weights)

ii) LStd =
∑N
i=1 w(ti, tcurrent)vi,d ∀d ∈ {1, ..., D} (time-weighted linear sum)

iii) SStd =
∑N
i=1 w(ti, tcurrent)v

2
i,d ∀d ∈ {1, ..., D} (time-weighted squared sum)

For o-microclusters the time of their creation is also stored. Let us refer to
microclusters whose N t ≥ τ as dense microclusters. The difference between the
meaning of p and o-microclusters is that p-microclusters must be dense.

The algorithm is initialized by taking InitNumber data objects from the
stream and sequentially creating p-microclusters for each object v, whose ε

Subspace Clustering of High Dimensional and Streaming Data 17

neighborhood contains at least τ objects (these neighbors are removed before
looking for the next object v).

For each new incoming data object, we try to merge it into an existing p-
microcluster. If the nearest p-microcluster would keep a variance lower than ε
after the merger, then we merge the object into that microcluster. Otherwise
the same is performed for the nearest o-microcluster. If we could merge it to
an o-microcluster, then we check whether it has now become dense. If so, it is
promoted to p-microcluster status. If we cannot merge to any o-microcluster,
then a new outlier microcluster must be created (with the current timestamp
stored as creation time). Pseudocodes can be found in [7].

In contrast to CluStream, the number of microclusters is not fixed in Den-
Stream. In order to avoid having too many microclusters, DenStream periodically
deletes p-microclusters, whose N t falls below the τ threshold and o-microclusters
whose N t haven’t reached the τ threshold in the last T timesteps.

3.3 Combining CLIQUE and microclusters

To handle stream data, CLIQUE has to be adapted to work on microclusters.
There are multiple possibilities to do this. The most straightforward way is to
generate several data objects from each microcluster and execute CLIQUE on the
generated objects. This can be done by the following resampling approach. As-
sume a microcluster with size N , where size refers to the possibly time-weighted
number of data object represented by the microcluster. We generate α·N samples
from the multivariate normal distribution with mean and variance parameters
computed from the incremental microcluster statistics. We repeat the process
for all microclusters.

We should note that this is not necessarily the best approach. CLIQUE only
needs to know the selectivity of each grid unit, but does not need the actual
data objects. This fact could be used to devise an alternative way to adapt
CLIQUE to the microcluster input. The usual CLIQUE algorithm makes several
passes over the database. Each pass iterates over the data objects and for each
data object, the selectivity counters of corresponding grid units are incremented
by one. When adapting to microcluster input, we could use passes over the
microclusters instead of passes over the data objects. Since microclusters can
span over several grid units, the contribution of one microcluster to the selectivity
of each grid unit must be determined carefully. This consists of calculating the
expected value of the number of microcluster members falling into each grid
unit, based on the microcluster statistics. Compared to the resampling method,
this alternative approach could potentially increase the speed and at the same
time avoid noise introduced by random sampling from the multivariate normal
distribution. On the other hand, the resampling method is significantly simpler
to implement and it is also conceptually clearer, since it can be used with any
offline algorithm, not only grid-based ones. Taking all of this into account, the
evaluation will be performed on the simpler, resampling-based method.

CluStream and DenStream were not designed to work with high-dimensional
data, which is different in CLIQUE. In particular, they do not consider subspaces

18 I. Sárándi

of the input space. This can be problematic. As noted in the introduction, dis-
tance measures, and in particular, nearest neighbor lookups become meaningless
in high-dimensions, therefore CluStream’s search for the microcluster with the
nearest centerpoint becomes essentially a random selection procedure. To ad-
dress this and related issues, Aggarwal et al. proposed a newer algorithm called
HPStream[2], which performes better in high-dimensional settings.

4 Evaluation

In this section, we will evaluate CLIQUE combined with microclustering al-
gorithms on streaming data. The evaluation is done using the SubspaceMOA
Framework by Hassani et al.[16]

4.1 Datasets

An evolving synthetic dataset and a real dataset are considered.
The synthetic dataset is 3-dimensional and contains 4000 data objects that

form two clusters, and each cluster has two relevant dimensions. The clusters
keep changing as the stream evolves.

The real dataset (network intrusion data from KDDCup 1999) suffers from
some issues. It has many attributes that have the same value over long time
in the stream causing the algorithms to break down due to matrix singularities.
Even after removal of all non-numeric and quasi-non-numeric (constant over long
time) attributes (26 removed attributes in total), the problem persists. Tavallaee
et al. analyzed this dataset and suggested an improved version of it, called NSL-
KDD[25]. By simply removing non-numeric attributes, this data still remains
not processable in our context. However, after the removal of 26 attributes that
are quasi-non-numeric, the dataset becomes possible to process. The removed
attributes are 1, 2, 3, 4, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 25, 26, 27, 28, 29, 38. Since 15 attributes still remain in the dataset, the
evaluation remains meaningful.

4.2 The evaluation measures

Subspace clustering needs careful evaluation techniques due to its special char-
acteristics compared to normal clustering. Hassani et al. evaluated several such
metrics[15]. The SubspaceMOA framework has the following metrics: 1.0-CE,
CMM, Entropy, F1, Purity, 1.0-RNIA, Rand statistic and SubCMM.

All algorithms were used with their default settings in SubspaceMOA.

4.3 Results

As we can see in Tables 1-4, the combination of CluStream and CLIQUE per-
forms slightly better than DenStream with CLIQUE. We must note, however,
that the 3 dimensional evaluation dataset is not representative for high-dimensional
data. (Also note that there is a problem involving the SubCMM measurement,
causing the DenStream evaluations to have zero result.)

Subspace Clustering of High Dimensional and Streaming Data 19

Table 1. Results of CluStream+CLIQUE on the synthetic dataset (measured after
1000, 2000, 3000 and 4000 data objects, followed by the mean values)

numObjects 1.0-CE CMM Entropy F1 Purity 1.0-RNI Rand st SubCMM

1000 0.27141 0.91609 0.57573 0.72022 0.64185 0.32027 0.94426 0.92367

2000 0.33483 0.90376 0.58031 0.6462 0.64424 0.41674 0.94936 0.67437

3000 0.24376 0.52621 0.13979 0.84106 0.64 0.25208 0.5003 0.53663

4000 0.21241 0.51352 0.13769 0.82384 0.712 0.25316 0.5003 0.49951

mean values 0.2656 0.71489 0.35838 0.75783 0.65952 0.31056 0.72356 0.65854

Table 2. Results of DenStream+CLIQUE on the synthetic dataset (measured after
1000, 2000, 3000 and 4000 data objects, followed by the mean values)

numObjects 1.0-CE CMM Entropy F1 Purity 1.0-RNI Rand st SubCMM

1000 0 0.91609 0.53429 0.6904 0.64082 0 0.94426 0

2000 0 0.90376 0.55132 0.3395 0.51699 0 0.94936 0

3000 0 0.15346 0.14201 0.69872 0.67387 0 0.5003 0

4000 0 0.36953 0.0332 0.67735 0.58155 0 0.5003 0

mean values 0 0.58571 0.3152 0.60149 0.60331 0 0.72356 0

Table 3. Results of CluStream+CLIQUE on the reduced NSL-KDD dataset

1.0-CE CMM Entropy F1 Purity 1.0-RNI Rand st SubCMM

4.3E-4 0.86318 0.7008 0.66651 0.78043 0.00125 0.99635 0.92804

Table 4. Results of DenStream+CLIQUE on the reduced NSL-KDD dataset

1.0-CE CMM Entropy F1 Purity 1.0-RNI Rand st SubCMM

0.0 0.89291 0.62465 0.66651 0.7168 0.0 0.99635 0.0

20 I. Sárándi

5 Conclusion

We have discussed in this seminar paper why high-dimensional and streaming
data applications require specialized treatment. In a major part of the paper we
have seen a detailed explanation of CLIQUE with pseudocodes that describe the
algorithm more precisely. We have also examined two microclustering approaches
that can be used in combination with CLIQUE to work on streaming data.
Finally we have evaluated both combinations on a real and a synthetic dataset
in SubspaceMOA. The evaluation yielded the result that CluStream outperforms
DenStream for the used datasets.

In future, further analysis on larger-scale high-dimensional streaming data
and comparisons with newer algorithms would be interesting topics to investi-
gate.

References

1. C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu. A framework for clustering evolving
data streams. In Proceedings of the 29th international conference on Very large
data bases-Volume 29, pages 81–92. VLDB Endowment, 2003.

2. C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu. A framework for projected cluster-
ing of high dimensional data streams. In Proceedings of the Thirtieth international
conference on Very large data bases-Volume 30, pages 852–863. VLDB Endowment,
2004.

3. R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic subspace
clustering of high dimensional data for data mining applications. SIGMOD Rec.,
27(2):94–105, June 1998.

4. I. Assent, R. Krieger, E. Muller, and T. Seidl. INSCY: Indexing subspace clusters
with in-process-removal of redundancy. In Data Mining, 2008. ICDM’08. Eighth
IEEE International Conference on, pages 719–724. IEEE, 2008.

5. K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft. When is nearest neighbor
meaningful? In Database Theory ICDT’99, pages 217–235. Springer, 1999.

6. A. Bifet. Adaptive learning and mining for data streams and frequent patterns.
ACM SIGKDD Explorations Newsletter, 11(1):55–56, 2009.

7. F. Cao, M. Ester, W. Qian, and A. Zhou. Density-based clustering over an evolving
data stream with noise. In Proceedings of the 2006 SIAM International Conference
on Data Mining, pages 328–339, 2006.

8. Y. Chen and L. Tu. Density-based clustering for real-time stream data. In Proceed-
ings of the 13th ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 133–142. ACM, 2007.

9. A. Da Silva, R. Chiky, and G. Hebrail. Clusmaster: A clustering approach for
sampling data streams in sensor networks. In Data Mining (ICDM), 2010 IEEE
10th International Conference on, pages 98–107. IEEE, 2010.

10. M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for
discovering clusters in large spatial databases with noise. In KDD, volume 96,
pages 226–231, 1996.

11. M. M. Gaber. Advances in data stream mining. Wiley Interdisciplinary Reviews:
Data Mining and Knowledge Discovery, 2(1):79–85, 2012.

Subspace Clustering of High Dimensional and Streaming Data 21

12. M. M. Gaber, A. Zaslavsky, and S. Krishnaswamy. Mining data streams: a review.
ACM Sigmod Record, 34(2):18–26, 2005.

13. S. Goil, H. Nagesh, and A. Choudhary. MAFIA: Efficient and scalable subspace
clustering for very large data sets. In Proceedings of the 5th ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data Mining, pages 443–452,
1999.

14. S. Günnemann, E. Müller, I. Färber, and T. Seidl. Detection of orthogonal concepts
in subspaces of high dimensional data. In Proceedings of the 18th ACM conference
on Information and knowledge management, pages 1317–1326. ACM, 2009.

15. M. Hassani, Y. Kim, S. Choi, and T. Seidl. Effective evaluation measures for
subspace clustering of data streams. In Trends and Applications in Knowledge
Discovery and Data Mining, pages 342–353. Springer, 2013.

16. M. Hassani, Y. Kim, and T. Seidl. Subspace MOA: Subspace stream clustering
evaluation using the MOA framework. In Database Systems for Advanced Appli-
cations, pages 446–449. Springer, 2013.

17. A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: a review. ACM
computing surveys (CSUR), 31(3):264–323, 1999.

18. K. Kailing, H.-P. Kriegel, and P. Kröger. Density-connected subspace clustering
for high-dimensional data. In Proc. SDM, volume 4, 2004.

19. H.-P. Kriegel, P. Kröger, and A. Zimek. Clustering high-dimensional data: A survey
on subspace clustering, pattern-based clustering, and correlation clustering. ACM
Trans. Knowl. Discov. Data, 3(1):1:1–1:58, Mar. 2009.

20. J. MacQueen et al. Some methods for classification and analysis of multivari-
ate observations. In Proceedings of the fifth Berkeley symposium on mathematical
statistics and probability, volume 1, page 14. California, USA, 1967.

21. G. Moise and J. Sander. Finding non-redundant, statistically significant regions
in high dimensional data: a novel approach to projected and subspace clustering.
In Proceedings of the 14th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 533–541. ACM, 2008.

22. E. Muller, I. Assent, S. Gunnemann, R. Krieger, and T. Seidl. Relevant subspace
clustering: Mining the most interesting non-redundant concepts in high dimen-
sional data. In Data Mining, 2009. ICDM’09. Ninth IEEE International Confer-
ence on, pages 377–386. IEEE, 2009.

23. L. Parsons, E. Haque, and H. Liu. Subspace clustering for high dimensional data:
a review. ACM SIGKDD Explorations Newsletter, 6(1):90–105, 2004.

24. K. Sequeira and M. Zaki. SCHISM: A new approach for interesting subspace
mining. In Data Mining, 2004. ICDM’04. Fourth IEEE International Conference
on, pages 186–193. IEEE, 2004.

25. M. Tavallaee, E. Bagheri, W. Lu, and A. Ghorbani. A detailed analysis of the KDD
cup 99 data set. In IEEE Symposium on Computational Intelligence for Security
and Defense Applications 2009, pages 1–6, July 2009.

26. Wikipedia. Clustering high-dimensional data — Wikipedia, the free encyclopedia,
2013. [Online; accessed 13-December-2013].

