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Abstract

Many important machine perception tasks involve people in some ways: self-driving
cars, service robots and industrial collaborative robots all need the ability to understand
our actions and to anticipate what we might do next. This thesis makes contributions
to a key task in visual human analysis: 3D human pose estimation. This active area of
research is concerned with estimating the locations of various body joints and other
anatomical landmarks in three-dimensional space, based on given sensor modalities, in
our case a single color image. The estimated 3D poses are useful in several downstream
tasks for autonomous systems, such as pose tracking over time, action recognition and
motion forecasting.

Our main contributions address challenges that typically arise in real-world (mobile)
robotics applications. This includes aspects of robustness, estimating pose in the
robot’s own coordinate frame, and building models that can generalize “in the wild,”
that is, beyond a specific motion capture studio setup.

We start by addressing robustness to occlusions, and present the first detailed
analysis of how occlusions deteriorate 3D human pose estimation quality. Typical
methods of the time did not address or evaluate this issue, as the standard benchmark,
Human3.6M, contains almost no occlusions (other than self-occlusions). We show
that augmenting training images with synthetic occlusions is an effective mitigation
strategy. This augmentation also turns out to have benefits beyond robustness: our
analysis shows that results improve on general benchmarks without occlusions as
well. This is further demonstrated through winning a pose estimation competition at
ECCV 2018.

In the next part, we turn to improving robustness to truncation, as well as recon-
structing pose in the absolute camera space. Truncation means that parts of the
body are not visible, being outside the input image boundaries. This is common for
robots that move in crowds, as people close to the camera do not fit within its field
of view. In the same work, we also address estimating the human pose at the metric
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Abstract

scale, performing learned scale recovery. Both capabilities are a consequence of our
novel formulation of volumetric body joint heatmap estimation. While prior works
use so-called 2.5D heatmaps, where two dimensions correspond to image space, we
decouple the prediction volume from the input image space, allowing metric-scale
truncation-robust estimation of poses. By combining this with 2D heatmap estimation,
we construct an end-to-end trainable architecture for absolute 3D pose estimation in
camera coordinates. Absolute pose estimation stands in contrast to the root-relative
problem formulation, which forms the bulk of the literature and only estimates joint
locations relative to the root (central) joint of the body. Our MeTRAbs approach
surpasses the state of the art of the time on multiple benchmarks (Human3.6M,
MPI-INF-3DHP and MuPoTS-3D) and forms the basis of our winning entry in an
ECCV 2020 competition, trained on a combination of five datasets.

Given the success of joint training on five datasets, we set out to take multi-dataset
training to the next level. Our goal is to explore how far data scale can improve
3D human pose estimation quality, and therefore we assemble PosePile, the largest
meta-dataset reported in the literature so far, combining 28 individual pre-existing 3D
datasets. For this, we have to reconcile the different annotation formats of the datasets,
as they do not label the same set of body landmarks. We propose to learn the relations
between these skeleton formats by discovering latent 3D landmarks that explain the
full set of keypoints, using a novel affine-combining autoencoder formulation for
dimensionality reduction. We show that data scale is important and that our method
allows enhanced information sharing among datasets.

Finally, we explore a novel use case for volumetric prediction, analogous to the
volumetric heatmaps used in the rest of the chapters. We perform rich volumetric
appearance feature prediction for the human reposing task, i.e., transforming an image
of a person to another pose. While prior works typically used 2D features, we show
that this generative task also benefits from a 3D, volumetric representation that has
been successful in pose estimation.
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Zusammenfassung

Viele wichtige maschinelle Wahrnehmungsaufgaben beziehen den Menschen in ir-
gendeiner Weise mit ein: Selbstfahrende Autos, Serviceroboter und kollaborierende
Industrieroboter benötigen alle die Fähigkeit, unsere Handlungen zu verstehen und
zu antizipieren, was wir als Nächstes tun könnten. Diese Arbeit leistet einen Beitrag
zu einer Schlüsselaufgabe in der visuellen Analyse von Menschen: der 3D-Körperpo-
senschätzung. Dabei handelt es sich um ein aktives Forschungsgebiet, das sich mit
der Schätzung der Positionen verschiedener Körpergelenke und anderer anatomischer
Punkte im dreidimensionalen Raum befasst, basierend auf gegebenen Sensormoda-
litäten, in unserem Fall einem einzelnen Farbbild. Die geschätzten 3D-Posen sind
in verschiedenen weiteren Komponenten autonomer Systeme anwendbar, wie z. B.
Pose-Tracking über die Zeit, Handlungserkennung und Bewegungsvorhersage.

Unsere Hauptbeiträge befassen sich mit Herausforderungen, die typischerweise in
realen (mobilen) Robotikanwendungen auftreten. Dazu gehören Aspekte der Robust-
heit, der Schätzung der Pose im eigenen Koordinatensystem des Roboters und der
Erstellung von Modellen, die sich „in the wild“ verallgemeinern lassen, d. h. jenseits
eines spezifischen Studios für Bewegungserfassung.

Wir beginnen mit der Robustheit gegenüber Verdeckungen und präsentieren die
erste detaillierte Analyse, wie Verdeckungen die Qualität der menschlichen 3D-Körper-
posenschätzung verschlechtern. Typische Methoden der damaligen Zeit haben dieses
Problem nicht behandelt oder ausgewertet, da der Standard-Benchmark Human3.6M
fast keine Verdeckungen (außer Selbstverdeckungen) enthält. Wir zeigen, dass die
Anreicherung von Trainingsbildern mit synthetischen Verdeckungen eine wirksame
Abhilfestrategie darstellt. Diese Erweiterung hat auch Vorteile, die über die Robustheit
hinausgehen: Unsere Analyse zeigt, dass sich die Ergebnisse auch bei allgemeinen
Benchmarks ohne Verdeckungen verbessern. Dies wird auch durch den Gewinn eines
Posenschätzungswettbewerbs auf der ECCV 2018 demonstriert.
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Zusammenfassung

Im nächsten Teil wenden wir uns der Verbesserung der Robustheit gegenüber Trun-
kierung sowie der Rekonstruktion der Pose im absoluten Kameraraum zu. Trunkierung
bedeutet, dass Teile des Körpers nicht sichtbar sind, da sie außerhalb der Grenzen des
Eingabebildes liegen. Dies ist bei Robotern, die sich in Menschenmengen bewegen,
häufig der Fall, da Personen in der Nähe der Kamera nicht in deren Sichtfeld passen.
In derselben Arbeit befassen wir uns auch mit der Schätzung der menschlichen Pose
auf der metrischen Skala und führen eine gelernte Skalenwiederherstellung durch.
Beide Fähigkeiten sind eine Folge unserer neuartigen Formulierung der volume-
trischen Körpergelenk-Heatmapschätzung. Während frühere Arbeiten sogenannte
2,5D-Heatmaps verwenden, bei denen zwei Dimensionen dem Bildraum entsprechen,
entkoppeln wir das Vorhersagevolumen vom Eingangsbildraum und ermöglichen so
eine metrische, trunkierungsrobuste Schätzung der Posen. Indem wir dies mit der
2D-Heatmap-Schätzung kombinieren, konstruieren wir eine durchgängig trainierbare
Architektur für die absolute 3D-Körperposenschätzung in Kamerakoordinaten.

Die absolute Posenschätzung steht im Gegensatz zur wurzelrelativen Problem-
formulierung, die den Großteil der Literatur ausmacht und die Gelenkpositionen
nur relativ zum Wurzelgelenk (Zentralgelenk) des Körpers schätzt. Unser MeTRAbs
Ansatz übertrifft den damaligen Stand der Technik bei mehreren Benchmarks (Hu-
man3.6M, MPI-INF-3DHP und MuPoTS-3D) und bildet die Grundlage für unseren
siegreichen Beitrag im ECCV 2020-Wettbewerb, trainiert auf einer Kombination von
fünf Datensätzen.

Angesichts des Erfolgs unseres MeTRAbs-Modells, das auf fünf Datensätzen trainiert
wurde, haben wir uns vorgenommen, das Multi-Datensatz-Training auf die nächste
Stufe zu heben. Unser Ziel ist es, zu erforschen, inwieweit die Vergrößerung der
Daten die Qualität der 3D-Körperposenschätzung verbessern kann. Daher stellen wir
PosePile zusammen, den größten Metadatensatz, der bisher in der Literatur beschrieben
wurde, indem wir 28 einzelne, bereits existierende 3D Datensätze kombinieren. Zu
diesem Zweck müssen wir die unterschiedlichen Annotationsformate der Datensätze
miteinander in Einklang bringen, da sie nicht dieselben Körpermerkmalen bezeichnen.
Wir schlagen vor, die Beziehungen zwischen diesen Skelettformaten zu erlernen, indem
wir latente 3D-Punkte entdecken, die die vollständige Menge von Keypoints erklären,
indem wir eine neuartige, affin-kombinierende Autoencoder-Formulierung zur Dimen-
sionalitätsreduktion verwenden. Wir zeigen, dass die Skalierung der Daten wichtig
ist und dass unser Verfahren einen verbesserten Informationsaustausch zwischen
Datensätzen ermöglicht.

Schließlich untersuchen wir einen neuen Anwendungsfall für volumetrische Vorher-
sagen, analog zu den volumetrischen Heatmaps, die in den übrigen Kapiteln verwendet
werden. Wir führen volumetrische Merkmalschätzung für das menschliche Reposing
durch, indem wir ein Bild einer Person in eine andere Pose transformieren. Während
frühere Arbeiten typischerweise 2D-Merkmale verwendeten, zeigen wir, dass diese
generative Aufgabe auch von einer volumetrischen 3D-Darstellung profitiert, die sich
schon bei der Posenschätzung bewährt hat.
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1
Introduction

1.1 Motivation
We titled this thesis Robust and Efficient Methods in Visual 3D Human Pose Estimation.
Let us start by unpacking this, in order to clarify our motivations and aims.

Why Humans? Perceiving people holds special importance among the various tasks in
artificial intelligence research. To be useful and safe in everyday life, intelligent systems
need to understand us, our intentions and actions. Self-driving cars must stop if we are
crossing the road ahead of them, indoor mobile robots need to find their way around
us in the corridor, and manufacturing robots should be able to perform tasks based on
our demonstrations—not to mention applications in medicine, sports, or digital media
curation. The object category of humans has therefore received special attention in AI
research. But despite decades of research and astonishing progress especially in the
last decade, many technical challenges remain unsolved. The fact that the brain also
dedicates plenty of precious resources for processing body images (Peelen & Downing,
2007; Vogels, 2022) indicates that we are indeed dealing with a difficult problem, and
that computer vision systems should probably also contain specialized modules for
human understanding.

Why Pose? When interpreting human images, it is important to choose the right level
of abstraction for each particular use case. If a person is far away, modeling them as a
point-like entity may be sufficient, but for a virtual try-on application we would want
to infer a detailed, high-fidelity reconstruction of the body as well as the clothing. For
many robotics applications, an intermediate level of abstraction is arguably the most
relevant and actionable information source: the articulated body pose. Human poses
are used in communication through gestures, for demonstrations of tasks, and they
contain cues about current actions and future intents, such as walking direction or the
work phase in manufacturing. Human poses are informative in medical evaluations
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1 Introduction

and athletic performance analysis, and can be used to drive the animation of virtual
characters in entertainment.

Why 3D? To be most useful for further processing, the pose representation should
not be confined to the image plane—it should be three-dimensional instead. While a
2D representation is inherently tied to one specific viewing angle, a 3D representation
can be freely rotated to yield a view-invariant understanding of the scene (cf. mental
rotation in humans, Shepard & Metzler, 1971). Furthermore, as robots need to act in
3D space, they also need to plan using 3D representations.

Why Visual? Cameras, images and videos are ubiquitous nowadays. While more
specialized modalities (such as depth sensors) can be of use, requiring them would
strongly restrict the pool of available training data and the possible application
scenarios. Only requiring visual (RGB) input therefore makes methods more versatile
and usable with many devices and data sources.

Why Robustness? When we deploy computer vision systems into the real world
(outside curated datasets, “in the wild”), training-time assumptions can be violated,
making robustness an important concern. In other words, it is not enough for
algorithms to be accurate under the artificially controlled conditions of laboratory
benchmarks, they need handle disturbances gracefully as well. In this thesis, we
specifically investigate robustness w.r.t. partial occlusions (blockage of the line of sight)
and image truncations (when only a part of the person is within the image boundaries).
Occlusions arise whenever people handle objects or walk behind obstacles, and image
truncation often happens when a person stands close to the camera, which is a common
occurrence for robots navigating in crowds. It is important to prepare systems for such
disturbances, already during their training.

Why Efficiency? Robots and other mobile devices have tight requirements for effi-
ciency in terms of energy and costs. This makes it important to accomplish tasks with
low amounts of compute power, while maintaining real-time performance.

Aims of This Thesis. In this thesis, we set out to advance the state of the art in
visual 3D human pose estimation. Our guiding principles are to keep the models
simple, modular and efficient, to tailor the problem formulations to the requirements
of robotics applications, and to focus on learning strong representations from data
instead of hand-crafted heuristics.

In recent years, we have witnessed enormous progress in computer vision and with
it also in 3D human pose estimation. This is in large part thanks to harnessing the
representational power of deep convolutional neural networks (CNN). An especially
powerful and intuitive way to encode 3D human pose within CNNs is via volumetric
heatmaps, discrete probability distributions defined on a volumetric grid, expressing

2



1.1 Motivation

where each body landmark is likely to be located. Several of our works are within this
paradigm, taking it further to achieve more robustness and better generalization, as
well as to tackle broader tasks and encode richer representations, while maintaining
simplicity and efficiency.

In detail, we first address the problem of occlusion sensitivity in 3D human pose
estimation by performing the first comprehensive study of how various occlusion
shapes degrade 3D pose estimation accuracy. We then propose to improve robustness
through synthetic occlusion augmentation. Here we find that it is important to use realistic
occluder objects as opposed to simple geometric shapes, and that this augmentation
also improves results on non-occluded test images.

We then address the issue of learning to predict metric-scale poses within the volumetric
heatmap paradigm. As opposed to typical “2.5D” heatmaps, our representation tackles
scale recovery, an important aspect for robotics. We further show that our approach
allows for truncation-robust recovery of human poses as well.

We harness this novel representation to construct an end-to-end trained absolute
3D human pose estimation architecture, where the 3D location of each person is also
estimated, as opposed to the typical task definition of root-relative pose estimation. We
achieve state-of-the-art results, all the while using low-resolution (8×8×8) heatmaps
that are efficient to predict within real-time applications even on embedded hardware.

Next, to ensure the best in-the-wild accuracy for practical applications, we take inspi-
ration from recent works that show the importance of large-scale data in training, and
turn to multi-dataset learning. Since naive merging of datasets is made difficult through
their different representations of the human skeleton (different sets of landmarks are
annotated in each), we develop a novel approach for learning from heterogeneously
labeled 3D keypoint data using our proposed affine-combining autoencoder formulation.
This allows us to scale 3D human pose training to new heights, spanning 28 3D datasets,
13 million examples and over a thousand people.

Finally, somewhat separately from the above line of works, we set out to better
understand the characteristics of volumetric heatmap prediction, and propose to
adapt it to more generic volumetric feature maps, for a finer-grained reconstruction task.
Specifically, we tackle the image-generative task of human reposing (changing the
human pose in a given image to another desired pose), and achieve state-of-the-art
scores, showing that this type of 3D processing is also useful beyond the pose estimation
task.

Social Impact and Ethical Considerations. As computer vision technology is ma-
turing, more and more applications are being put into production that impact our
lives, prompting deeper considerations of ethical aspects in recent years. This holds
especially for technology that can sense and perceive humans. How we record, analyze
and store such data is an important emerging topic at the intersection of engineering,
science, ethics, law and politics. Finding the correct solutions will require informed
debate with broad participation from experts of various fields as well as the general
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1 Introduction

public. It will be ultimately up to our wisdom to foster scientific and technological
progress that can benefit us as individuals and society as a whole.

1.2 Contributions
We make the following contributions in this thesis:

• We perform the first systematic study on the effects of occlusions in deep learning–
based 3D human pose estimation, using various different shapes (rectangles,
circles, bars), as well as more realistic occluder objects added to test images.
Since typical benchmarks do not model these effects, the aspect of occlusions
had often been neglected in prior literature. Our analysis reveals that good
benchmark performance on non-occluded images does not necessarily translate
to robustness.

• We propose synthetic occlusion augmentation for addressing the issue of occlusion
robustness. We perform a detailed analysis of what type of training-time
occlusions perform best, and find it important to use realistic occluder objects
for augmentation. We further discover that synthetic occlusion augmentation
not only improves the robustness on occluded test images, but it also acts as an
effective regularizer, and improves accuracy even on non-occluded test images.
Our resulting model achieves first place in the PoseTrack challenge on 3D human
pose estimation at the European Conference on Computer Vision in 2018.

• We introduce a novel metric-scale truncation-robust heatmap representation (MeTRo)
to address two challenges simultaneously. First, this representation allows
learning scale recovery from data, resulting in predictions that are made directly
on a millimeter scale, instead of only in pixel scale. With this, we set a new state of
the art on two commonly used 3D pose benchmarks. Second, our representation
is naturally truncation-robust, since it decouples the input pixels space from the
output volumetric heatmap space. Therefore, even when the person is partially
outside the input image, we recover a complete skeleton estimate. This truncated
scenario was previously underexplored despite its relevance to robotics, and our
results significantly outperform the state of the art of the time.

• We further harness our MeTRo heatmap representation to construct an end-
to-end absolute 3D human pose estimator, which we call MeTRAbs. We combine
MeTRo heatmaps with vanilla 2D heatmap estimation, and propose to use a
differentiable geometric module to combine the 2D estimate with the root-relative
3D prediction to yield the absolute pose in 3D camera space. This allows us to
backpropagate the gradients of an absolute loss, all the way to the backbone
parameters. Through this method, we achieve state-of-the-art benchmark results,
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1.3 Structure of the Thesis

as well as first place in the 3D Poses in the Wild (3DPW) challenge at the European
Conference on Computer Vision in 2020. We furthermore show that the method
is real-time-capable on embedded GPU hardware as well.

• We propose a novel method to scale fully supervised 3D human pose estimation
to a previously unexplored extreme multi-dataset regime. We tackle the so far
rarely considered problem of supervising one pose estimator with heterogeneous
annotations. Specifically, we propose a geometric autoencoding method for
discovering the relations between multiple discrepant skeleton definitions that
are used in the annotations of different publicly available datasets. Our affine-
combining autoencoder is equivariant to relevant transformations (translation,
rotation, chirality) and enables the transfer of learned relations among skeletons
from the 2D image plane to the depth dimension. With this, we improve
the consistency of multi-skeleton predictions and create the strongest publicly
available 3D pose estimator models as measured on the 3DPW benchmark.

• We develop a method to extract rich 3D appearance features from human images,
inspired by volumetric heatmap prediction. Specifically, we address the task
of human reposing, which had previously been typically addressed with two-
dimensional methods. We show that predicting volumetric appearance features—
in analogy to the volumetric heatmaps we use in the other chapters—is effective
in this task, and present state-of-the-art quantitative results on two benchmarks.
Specifically, we warp the volumetric features according to the desired pose change
and decode the result into an image in a generative adversarial network (GAN)
framework. We show that our 3D volumetric appearance representation, as
well as conditioning on the 3D target pose are important for good performance,
outperforming directly comparable 2D baselines.

1.3 Structure of the Thesis

The thesis is structured as follows.

Chapter 1 introduces the overall motivation behind our research, summarizes our key
contributions and outlines the structure of the thesis.

In Chapter 2 – “Related Work,” we present an overview of previous work on the task of
visual 3D human analysis. We begin with a historic overview, followed by a systematic
review of the current state-of-the-art research landscape according to a broad range of
aspects.
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In Chapter 3 – “Preliminaries,” we cover fundamental topics that form the basis for
later chapters. We start with a brief overview of deep learning, including key network
architectures such as ResNet and EfficientNet that are used later in the thesis. We
then discuss the fundamentals of image formation, camera models and the role of
3D geometry in these topics. We finish this chapter with an overview of the main
evaluation metrics and datasets used in 3D human pose estimation.

In Chapter 4 – “Occlusion Robustness in 3D Human Pose Estimation,” we describe
our experiments on occlusion robustness in the context of 3D human pose estimation.
We show that models trained on the most common academic dataset (Human3.6M)
can suffer from severe occlusion sensitivity, even if they achieve excellent benchmark
performance on non-occluded images. We also present an effective method to combat
this problem through synthetic occlusion augmentations applied at training time. Our
extensive experiments show that the shape of these synthetic occluders matter and
realistic occluders are necessary to achieve the best performance. We show that such
augmentations improve the prediction results even on non-occluded test images. This
chapter is based on research originally presented in Sárándi et al. (2018a).

In Chapter 5 – “Synthetic Occlusion Augmentation: A Case Study,” we present a case
study of applying synthetic occlusion augmentation within the context of the PoseTrack
Challenge on 3D human pose estimation at ECCV 2018. This chapter describes our
winning approach originally presented in Sárándi et al. (2018b).

In Chapter 6 – “MeTRo: A Metric-Scale Truncation-Robust Heatmap Representation,”
we describe a novel volumetric heatmap estimation method for truncation-robust
metric-scale pose recovery. While prior work on volumetric heatmaps has tied the
prediction volume’s X and Y axes to the image space, we loosen this relationship
and require the output to appear at a fixed metric scale regardless of the input zoom
level. We furthermore do not fix the placement of the predicted skeleton within the
prediction volume, allowing the recovery of complete skeletons even in truncated
cases. We also propose a centered-striding method, adjusting the strided layers of the
backbone network to perform better under the dense prediction scenario, i.e., when
the test-time striding is decreased compared to the training time. With this method,
we achieve state-of-the-art results on two 3D human pose estimation benchmarks. This
chapter is based on research originally presented in Sárándi et al. (2020).

In Chapter 7 – “MeTRAbs: An End-to-End Learned Absolute 3D Pose Estimator,” we
discuss our followup work to the previous chapter. This new method is capable of
learning absolute 3D human pose estimation in an end-to-end manner, by combining
2D heatmap estimation on the one hand, and root-relative metric-scale poses derived
from the MeTRo representation on the other. We combine these two predictions using
a differentiable, geometric reconstruction module based on either a full-perspective or
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a weak-perspective camera model. We evaluate our method on a multi-person absolute
3D pose estimation benchmark and achieve state-of-the-art results. We furthermore
present performance experiments on desktop and embedded hardware, as well as
several lightweight backbone networks, and find that our method can run efficiently
on low-powered robot hardware as well. This chapter is based on research originally
presented in Sárándi et al. (2021).

In Chapter 8 – “Bridging Skeleton Formats via Geometric Autoencoding for Multi-
Dataset Learning,” we turn to multi-dataset learning. In 3D pose estimation compe-
titions, best performing entries have used multiple datasets in combination, which
raises the question how far this scaling can be pushed. Our goal in this chapter is
to extend 3D pose estimation training to all currently available large-scale labeled
datasets and supervise one model with them. The problem we face in this endeavor,
however, is that the different datasets do not use the same skeleton format in their
labels, i.e., they label different sets of anatomical landmarks. Our novelty lies in
devising an autoencoder-based method to discover how the different skeletons relate
to each other without using any external reference such as a parametric body model.
Specifically, we propose the affine-combining autoencoder equipped with constraints
suitable for this task. It takes as input the union of all body joints defined across all
datasets and compresses them to a lower-cardinality latent keypoint set. We show that
this allows more consistent multi-skeleton prediction and better information sharing
between the differently labeled data sources. By applying this method to the previously
unexplored scale of 28 3D datasets and 13 million examples, we produce models with
significantly higher prediction quality than other publicly available models, showing
that dataset combinations are an effective way to introduce larger variability into the
training process. This chapter is based on research originally presented in Sárándi et al.
(2023).

In Chapter 9 – “Reposing Humans by Warping 3D Features,” we switch tasks and tackle
human reposing, i.e., the task of transforming an image of a person to depict them in a
different pose. While prior works typically work in 2D, we take inspiration from the
success of volumetric joint heatmap prediction (as used in previous chapters) and use
the same paradigm to produce richer feature volumes. We then warp these feature
volumes according to the desired pose change, and decode the warped features to the
result image, conditioned on a 3D target pose. Our method achieves state-of-the-art
quantitative results on two benchmarks and the ablations show the value of using 3D
feature warping and conditioning on the 3D target pose, as opposed to doing these
things in 2D. This chapter is based on research originally presented in Knoche et al.
(2020). That paper is in turn based on Markus Knoche’s master’s thesis, supervised by
Prof. Bastian Leibe and myself.
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Finally, Chapter 10 concludes this thesis with a recapitulation of the technical chapters
and an outlook on exciting open challenges for the field.

Note: This thesis is based on the technical contributions of my above-mentioned publications
(Sárándi et al., 2018a,b, 2020, 2021, 2023; Knoche et al., 2020). Several text passages, figures
and tables are reproduced from these articles, but new content has also been added to provide
deeper insight into our methods, including more detailed explanations, analyses and ablations.
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2
Related Work

In this chapter, we review the history and the current landscape of 3D human pose
estimation research and closely related fields.

We proceed in two parts: In Section 2.1, we follow a chronological order describing
major historic developments, allowing us to draw connections between different
subfields that built on top of each other’s progress in tandem. Then, in Section 2.2 on
page 16, we give an overview of the research landscape from a design-space perspective,
categorizing currently important and promising approaches along several axes. For
where “history” ends and the present day begins, we will draw the cutoff line around
the start of our work on this topic (i.e., 2017–2018).

2.1 A Historical Overview

Computer vision for 3D human analysis is not a new research topic. While recent years
have produced explosive progress, the field’s history reaches back far, towards the
very inception of computer vision as a discipline. Nested under the field of artificial
intelligence, a major goal of computer vision has always been to equip machines with
visual perception capacity so that they can naturally interact with and accomplish
useful tasks for humans (Nilsson, 2009). This provided obvious motivation to develop
algorithms to interpret images of humans. However, even if we were to disregard
direct applicability, the visually complex and highly articulated nature of the human
body has made it an interesting research object for benchmarking and pushing the
limits of vision techniques in each era.

In the following, we review the major developments and milestones of the field. As
the later chapters of this thesis are mainly concerned with single-image monocular 3D
human pose estimation, we will keep the history of this task in the foreground.
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2.1.1 Precursors
Even before the invention of the computer, people showed an interest in documenting
and systematizing human pose for purposes such as arts, sciences, medicine or
athletics. Highly abstract human figures expressing various poses already appeared
in cave paintings of the Paleolithic. Klette and Tee (2008) present an overview
of major accomplishments starting from the Antiquity. Of special note are the
chronophotographic recordings of human and animal motion by Marey and Muybridge
in the late 19th century. A formalized human motion representation was then developed
by Laban (1928) for notating dance moves. In a seminal psychophysical study, Johansson
(1973) attached bright markers to moving actors’ body joints, and showed that even
such sparse information allows observers to understand the pose semantics—an early
inspiration for today’s optical motion capture systems.

2.1.2 Early Algorithmic Attempts
Very early computer vision research was confined to simple worlds consisting of
geometric primitives (Roberts, 1963). However, Badler (1975) already envisioned
an algorithmic framework for interpreting motion (including human motion) from
video. Marr and Nishihara (1976, 1978) fitted a cylinder-based hierarchical 3D human
model to skeleton-like primal sketches (Marr, 1976) extracted from images. Badler and
Smoliar (1979) described the outlines of a method to turn human motion videos into a
Laban-inspired representation using stick figure, surface and volume-based human
models. Rashid (1980) developed algorithms to process human keypoint motions
(moving light displays, in the style of Johansson, 1973). O’Rourke and Badler (1980)
designed a system to track 3D human pose from video, although it only worked on
simple synthetic renderings, not real camera input.

Hogg’s (1983) WALKER method could already track 3D pose in a real, albeit very
simple, image sequence that showed a walking man from the side. This method fitted
a cylinder-based human model to image edges obtained with the Sobel filter (Sobel
& Feldman, 1968). Around the same time, Akita (1984) estimated 3D human motion
from video by extracting binary contours and finding each body part with rule-based
processing of the contours. Lee and Chen (1985) assumed known 2D joint positions
and inferred plausible 3D poses by assuming fixed bone lengths.

2.1.3 Focus on Motion and Kinematics
Throughout the 1990s, research on 3D human analysis was focused on aspects of motion
tracking, geometry and the 3D kinematics of articulation (Terzopoulos & Metaxas,
1991; Yamamoto & Koshikawa, 1991; Okawa & Hanatani, 1992; Rohr, 1994; Gavrila &
Davis, 1996; Huber, 1996; Wren et al., 1997; Bregler & Malik, 1998; Brand, 1999). These
methods typically assumed a known first-frame pose initialization. Single-image pose
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estimation was hard, since extracting rich visual features directly from images remained
too difficult up until the mid-2000s. Hence, the features remained rather simple, with
typical image processing pipelines starting out with some kind of binarization and
continuing with operations on silhouettes or edges. For a detailed overview of this
period, see the surveys by Aggarwal and Cai (1999) and Gavrila (1999).

2.1.4 Early Single-Image Pose Estimation

An early single-image, vision-based pose estimator (as opposed to video processing) is
due to Rosales and Sclaroff (2000) but they predicted only 2D poses. They extracted
Hu moment features (Hu, 1962) from the human silhouette, and employed multilayer
perceptrons (MLP; Rosenblatt, 1962) to regress the joint locations. Barron and Kakadi-
aris (2000) presented a novel method to lift 2D poses into 3D, but did not tackle the
image analysis part of the task.

Mori and Malik (2002) put the two stages together, resulting in an approach that could
estimate 3D human pose from a single image. They estimated 2D pose using silhouette
shape context matching and lifted the result to 3D with a purely geometry-based
step following Taylor (2000). Instead of a two-stage decomposition, Shakhnarovich
et al. (2003) regressed body joint angles directly from edge direction histograms
with locality-sensitive hashing and locally weighted regression. Machine learning
developments, especially kernel methods (Schölkopf & Smola, 2002) such as support
vector machines (SVM; Cortes & Vapnik, 1995), fueled further progress. For example,
Agarwal and Triggs (2006) used SVMs and relevance vector machines to regress
directly from silhouette shape descriptors to joint angles. Such direct approaches are
called discriminative methods, in contrast to generative methods, which optimize over the
configuration space of a known human model (e.g., “cylinder man”) to match observed
image evidence.

Generative (model-based) 3D approaches continued to improve as well. In a
probabilistic graphical model framework, Sigal and Black (2006b) proceeded in two
steps, first inferring 2D model state from silhouette and color features then learning
to infer the state of a 3D tapered-cylinder human model from this 2D distribution.
Going beyond such cylinder or sphere-based human models, Balan et al. (2007) used
the higher-fidelity SCAPE mesh model (Anguelov et al., 2005) to obtain more accurate
shape and pose estimation from images.

For 2D pose estimation, most single-image methods were based on the idea of
pictorial structures, which model the body in a bottom-up fashion, as individually
detectable parts loosely connected by “springs.” Initially proposed by Fischler and
Elschlager (1973), this class of models gained renewed interest with Felzenszwalb and
Huttenlocher’s (2000) influential work (see also Felzenszwalb & Huttenlocher, 2005).
2D pose estimation approaches of this type include those by Ramanan and Forsyth
(2003); Sigal et al. (2003, 2004); Hua et al. (2005).
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2.1.5 Need for More Data
Around the mid-2000s, it became clear that a large obstacle to the further development
of 3D human pose estimation was the lack of large benchmarks to consistently train,
evaluate and compare the growing catalog of methods. While the spotlight often
shines on methods and techniques, high-quality and large-scale data can be just as
important for scientific progress (Sambasivan et al., 2021).

The HumanEva dataset (Sigal & Black, 2006a; Sigal et al., 2010) filled the void
by providing synchronized multi-view videos along with about 40 000 reference
3D poses obtained through marker-based motion capture. The difficulty of the
dataset was calibrated to the state-of-the-art pose estimation capabilities of the time.
Correspondingly, HumanEva only depicts simple, upright poses, e.g., walking, jogging
or shadowboxing, making it less relevant for benchmarking today’s stronger algorithms.
The first large-scale dataset with more complex poses (e.g., sitting, squatting, kicking
or lying on the ground) appeared only in the mid-2010s (Human3.6M; Ionescu et al.,
2014). We give a detailed overview of these and later datasets in Section 3.5 on page 44.

2.1.6 Rise of Strong Image Descriptors
The 2000s brought a wave of major developments in computer vision, which also
impacted 3D human analysis. Gradient histogram–based image descriptors, such as
SIFT (Lowe, 2004) and HOG (Dalal & Triggs, 2005), offered robust tools to process
detailed image patterns (such as texture), instead of being confined to working on silhou-
ettes and contours. By clustering such descriptors, Csurka et al.’s (2004) bag-of-visual-
words model enabled the extraction of high-level semantic content from images. An
example for such visual word–based methods in 3D pose estimation is Ning et al. (2008).

The new techniques and the availability of HumanEva allowed 3D human pose
estimation research to advance fast, with much more methods proposed than could be
reviewed here, but Sarafianos et al.’s (2016) survey gives a good overview for the period
between 2008 and 2015. Several of these works followed the pipeline of localizing
2D parts based on strong descriptors such as HOG or SIFT, and inferring the 3D
configuration, for example though exemplar matching or probabilistic inference (Simo-
Serra et al., 2012, 2013; Wang et al., 2014a).

While our review focuses on RGB methods, we have to mention the depth-based
Kinect gaming sensor. Released in 2010, the Kinect made markerless 3D human pose
technology known and affordable among a general audience for the first time. The
Kinect (and its successors the Kinect v2 and Azure Kinect) also enabled the collection of
several large-scale datasets (Ni et al., 2011; Ofli et al., 2013; Göransson et al., 2014; Wang
et al., 2014b; Shahroudy et al., 2016; Alexiadis et al., 2017; Liu et al., 2017; Zimmermann
et al., 2018; Joo et al., 2019), and was used extensively in many research projects (Han
et al., 2013). The original Kinect’s underlying pose estimation algorithm (Shotton et al.,
2013) used decision forest learning from simple depth comparison features.
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2.1.7 Deep Learning Era
The “ImageNet Moment.” The year 2012 marks a watershed moment in computer
vision: Krizhevsky et al.’s (2012) AlexNet convolutional neural network (CNN) decisively
won the ImageNet Large Scale Visual Recognition Challenge (Russakovsky et al., 2015),
leading to a surge of renewed interest in artificial neural networks among the vision
community. Within a few years, virtually every branch of computer vision, including
human pose estimation, underwent a paradigm shift to using neural approaches.

Although neural networks have a long history, which we discuss in Section 3.1.2 on
page 28, several factors made this new incarnation more successful. The availability
of large-scale datasets (e.g., ImageNet, Deng et al., 2009) and more compute power
(esp. GPUs) were no doubt necessary. However, various seemingly small design
choices (parameter initialization techniques, normalization layers, activation functions,
optimizers, etc.) along with new automatic differentiation software frameworks added
up to a qualitatively new paradigm, which became widely known as deep learning (Le-
Cun et al., 2015). This term is now also often applied retroactively to any layered or
hierarchical representation learning (Chollet, 2021).

Heatmaps for 2D Pose. Toshev and Szegedy’s (2014) DeepPose was the first deep-
learning approach for human pose estimation (in 2D), using direct coordinate regression
with fully connected layers at the end of a CNN. However, Jain et al. (2014) and Tompson
et al. (2014) soon found that a classification-based, sliding-window formulation outper-
forms coordinate regression. These approaches produce belief maps (or heatmaps), i.e.,
spatial output arrays, which contain high values at the likely positions for each body
joint. CNNs are very effective in producing heatmaps in a sliding-window fashion,
since computation can be shared between neighboring windows in the same forward
pass. While the idea of generating such spatial classification output existed already in
some early CNNs (Matan et al., 1991; Wolf & Platt, 1993), it got popularized again in
the influential OverFeat (Sermanet et al., 2013) and fully convolutional network (FCN) by
Long et al. (2015), for localization and segmentation, respectively.

We note that the methods by Jain et al. (2014) and Tompson et al. (2014) were not yet
end-to-end deep learning–based. To impose plausible structure onto the joint positions
(e.g., plausible bones), they used probabilistic graphical models in a postprocessing
step.

Early Deep 3D Pose Estimation. For 3D pose estimation, the best representation was
less clear, and a major research question for several years was how to reconcile, combine
or choose between heatmap prediction and coordinate regression. Li and Chan (2014)
proposed a multi-head architecture with a 2D detection and a 3D regression branch.
However, the direct 3D regression did not perform well, therefore early deep learning
approaches such as Li et al.’s (2015) still used classical tools such as structured support
vector machines (Tsochantaridis et al., 2005) in combination with CNNs.
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New Datasets. Given the transformative impact of ImageNet on object recognition,
new large-scale datasets were also introduced for human pose estimation, such as
MPII (Andriluka et al., 2014) and COCO (Lin et al., 2014) in 2D, as well as Hu-
man3.6M (Ionescu et al., 2014) and later MPI-INF-3DHP (Mehta et al., 2017a) in
3D.

Body Shape. The release of the Skinned Multi-Person Linear (SMPL; Loper et al., 2015)
parametric 3D mesh model reinvigorated research into visual body shape estimation
alongside pose estimation and remains widely used to this day.

Multi-Stage Iterative Refinement Architectures. Carreira et al. (2016) proposed an
iterative error feedback mechanism for 2D pose estimation, and the idea of stepwise
refining pose predictions remained a major theme in later research. Wei et al.’s (2016)
convolutional pose machine also used an iterative, multi-stage approach but represented
the predictions after each stage as refined heatmaps instead of numerical offsets. Newell
et al. (2016) devised a similar multi-stage architecture, the stacked hourglass network, but
also incorporated ideas from encoder–decoder segmentation architectures (Noh et al.,
2015; Ronneberger et al., 2015; Badrinarayanan et al., 2017). These methods relied fully
on end-to-end deep learning and no longer needed additional graphical models or
similar postprocessing techniques.

Multi-Person Strategies. Given the successes in deep single-person pose estimation,
many researchers turned to the topic of multi-person estimation, where multiple
poses need to be estimated in one image. DeepCut (Pishchulin et al., 2016) and
DeeperCut (Insafutdinov et al., 2016) formulated 2D multi-person pose estimation in
two steps: a part candidate detection step, and a grouping step via integer linear
programming to enforce geometrically consistent results.

Cao et al.’s (2017) OpenPose introduced part affinity fields (PAF) for multi-person
2D pose and became a de facto standard off-the-shelf tool for 2D pose estimation in
downstream research. PAFs are per-bone vector fields that point towards neighboring
joints of the same person.

Newell et al. (2017) proposed to predict associative embedding tags at each joint position
and to cluster these to find which ones belong to the same person.

He et al. (2017) extended the Faster R-CNN (Ren et al., 2015) object detector to Mask
R-CNN, which could predict segmentation masks and 2D poses for multiple people.

In multi-person 3D pose estimation, LCR-Net (Rogez et al., 2017, 2019) was also
inspired by Faster R-CNN, and extended the anchor box refinement idea with anchor
pose refinement.

Progress in 3D Pose. Tekin et al. (2017) fused a 2D heatmap prediction stream’s
output into the 3D pose regression stream to exploit the uncertainty information
within the heatmaps and reap some of the benefits of heatmap representations for 3D
estimation.
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Zhou et al. (2017) introduced the idea of mixed-batch 2D/3D weakly-supervised
training, where diverse, in-the-wild 2D data from MPII could be seamlessly blended
with studio-based 3D data from Human3.6M.

Sun et al. (2017) argued for regression-based methods and showed that regression
can achieve competitive results for both 2D and 3D estimation. For this, they use bone
vectors as regression targets instead of joint positions, as well as a “compositional”
loss, which supervises displacement vectors between joint pairs.

Martinez et al. (2017b) showed that lifting 2D poses to 3D through an MLP can be a
surprisingly strong baseline, inspiring a line of further lifting-based methods.

Volumetric Heatmaps. Pavlakos et al. (2017) took the opposite approach and intro-
duced volumetric heatmap prediction for 3D pose, based on the success of heatmaps in
2D. They used a stacked hourglass architecture with a coarse-to-fine strategy, each
hourglass stage predicting finer-grained heatmaps along the depth dimension. In
2D, the benefit of heatmaps is clearer, as it exploits the convolutional sliding-window
structure, performing a set of localized binary classifications of whether the joint
is at the center of the receptive field or not. This automatically establishes a direct
correspondence to the location, while such a correspondence must be learned in
regression methods. However, it is less well understood why the heatmap construct
also works well for the depth axis. Recent research by Stewart et al. (2022) on why
classification tends to work better than regression (the “binning phenomenon”) may
hold clues to this.

Mehta et al. (2017b) proposed VNect (a video-based analog of Kinect), which uses
2D heatmaps along with novel location maps that contain X, Y, Z values for 3D joint
coordinates, which need to be read out at 2D heatmap peaks to assemble the 3D pose.
Mehta et al. (2018) extended this approach to occlusion-robust pose maps, where the 3D
coordinates can also be read out from different 2D joint locations.

Sun et al. (2018a) (concurrently with Nibali et al., 2018 and Luvizon et al., 2018)
introduced integral regression, also known as soft-argmax, for 2D and 3D pose esti-
mation. Previously, soft-argmax was used in robotic policy learning (Levine et al.,
2016) and information retrieval (Chapelle & Wu, 2010), its main advantage being that
it is differentiable and reduces the quantization errors inherent in the hard-argmax
decoding of traditional heatmaps. The method predicted volumetric heatmaps like
Pavlakos et al. (2017), but dispensed with the iterative refinement stages, and rather
adopted a simple ResNet backbone with a transposed convolutional head for increased
output resolution.

From around this point on, the pace of research has become so fast that trying to
weave it all into a single chronological narrative would be futile. Instead, we will
continue based on topical categories.
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2.2 Current Research Landscape
After the chronological overview of the field’s history, let us now briefly survey the
current state of the art and important areas of active research.

We can classify the methods along multiple axes based on the problem formulation
(input and output definitions), the level of supervision, the stages within a method,
the architecture, etc. We will proceed by mapping the current design space of human
analysis, describing prominent example methods along the way. However, it is
important to note that no such classification is complete or final, and interesting papers
often break or transcend previously common categorizations.

2.2.1 Input Modalities
3D human pose estimation has been tackled using a wide range of sensors. RGB cameras
are ubiquitous, simplifying training data collection and allowing wide deployability
without needing special sensors at inference time. However, inferring 3D from RGB
is ambiguous, and therefore depth cameras are also often used (Zimmermann et al.,
2018; Bashirov et al., 2021), especially in robotics. Images are typically taken from a
third-person perspective, but there is increasing research interest in using wearable,
egocentric cameras mounted on the head (Jiang & Grauman, 2017; Xu et al., 2019; Tome
et al., 2020) or the wrist (Lim et al., 2022), since these do not require fitting a room
with cameras in advance.

Inertial measurement units (IMU) attached to the body can also be useful when the
line of sight is blocked or cameras are difficult to calibrate or synchronize (Pons-Moll
et al., 2010; von Marcard et al., 2018). 3D human pose estimation has also been
addressed with LiDAR point clouds (Cong et al., 2022; Li et al., 2022b; Wu et al.,
2022), typically for automotive use cases. Other types of sensors used include tactile
carpet signals (Luo et al., 2021), polarization images (Zou et al., 2020a), or even WiFi
radio (Zhao et al., 2018; Geng et al., 2022) for through-wall human sensing.

2.2.2 Target Level of Abstraction
Depending on application requirements and available compute, we may aim at inferring
various levels of details about humans. This can range from only recognizing the mere
presence of a human, through bounding box detection and skeletal joint localization
all the way to high-fidelity, clothed, textured mesh reconstruction with soft-tissue
deformations, etc.

Body Joints. The term 3D human pose estimation typically refers to estimating a list of
3D coordinates for major body joints such as shoulders, knees, etc. This representation
abstracts away appearance details of the person, such as body shape and clothes,
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and this can be useful for applications such as pedestrian motion forecasting, where
appearance details are immaterial to the task.

In this representation, orientations are typically not reconstructed around the main
axes of the bones. E.g., from the elbow and wrist joint positions it is not possible to
tell the twist of the wrist (supination vs. pronation). Fisch and Clark (2021) tackle this
ambiguity by estimating virtual orientation keypoint positions in addition to the body
joint positions.

Geometric Parts. Representing the human body as a connected set of cylinder-
like geometric primitives was a common approach historically (Marr & Nishihara,
1976; Sigal et al., 2003; Sigal & Black, 2006b). Today, these have little relevance, with
discriminative methods rather focusing on keypoint estimation and generative methods
on more complicated parametric shape models.

Parametric Mesh Models. SCAPE (Anguelov et al., 2005) is an early example of a
detailed parametric body mesh model, and was already used for image-based shape
and pose estimation in Balan et al. (2007). As opposed to the single mesh in SCAPE,
a more sophisticated incarnation of part-based models is the stitched puppet of Zuffi
and Black (2015), where the parts are made of triangle meshes. SMPL (Skinned Linear
Multi-Person Model; Loper et al., 2015) is perhaps the most influential body model in
the literature and is widely used today. It consists of an artist-defined base template
mesh with 6890 vertices. To model individual shape variation between people, the
vertex positions can be adjusted within a high-dimensional PCA-derived shape space.
It also models pose-dependent shape deformations (blend shapes) and can be posed
by specifying joint rotations. Adam (Joo et al., 2018) and SMPL-X (Pavlakos et al.,
2019) are extensions of SMPL with more details on hands and faces. STAR (Osman
et al., 2020) improves on SMPL by focusing on spatial locality of the blend shapes.
SUPR (Osman et al., 2022) models the body both as one unit and as body parts and
also includes detailed feet. GHUM (Xu et al., 2020a) dispenses with the linear aspect
of the SMPL family and learns a nonlinear shape space using variational autoencoders
and normalizing flows.

An interesting recent direction is the estimation of mesh models in a nonparametric
fashion, by modeling the vertices individually (Moon & Lee, 2020; Lin et al., 2021a;
Corona et al., 2022). This essentially reduces body mesh estimation to the problem of
keypoint estimation as in classic skeleton-based 3D human pose estimation, only with
a much larger number of keypoints.

More generally, there is a converging trend between keypoint-based and parametric
model–based estimation, e.g., Zanfir et al. (2021); Wang et al. (2022). One problem with
directly estimating body model–based pose and shape in the parameter space (e.g.,
Kanazawa et al., 2018) is the complicated nonlinear mapping between that space and
where the body parts actually end up in the image. Using the more location-precise
3D keypoint estimation paradigm has been shown to help mesh estimation (Iqbal et al.,
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2021). To ensure better matching to image evidence, many mesh estimation methods
perform iterative optimization at test time, which was very expensive in earlier methods,
e.g., 1 minute per image in Bogo et al. (2016). As opposed to such classical analytic
and numerical methods, recent research has also explored learned optimization and
learned inverse kinematics solvers to accelerate body model fitting (Song et al., 2020;
Li et al., 2021b; Shetty et al., 2022).

DensePose. The DensePose (Güler et al., 2018) representation specifies for every
human pixel which surface point of the body is depicted there in reference to a 3D
body template. It can be understood as a more detailed, continuous generalization
of body part segmentation with discrete labels, and can be used as an intermediate
representation for fitting body models.

Volume Models. Some methods model the human occupancy with voxel-based
(Trumble et al., 2018; Varol et al., 2018) representation or using implicit distance
fields (Saito et al., 2019, 2020; Mihajlovic et al., 2022).

NeRF (neural radiance fields; Mildenhall et al., 2021) representations have also been
successfully adopted for detailed human representation (Bergman et al., 2022; Weng
et al., 2022).

2.2.3 Lifting vs. Direct Estimation
3D pose estimation approaches can be categorized by the steps or stages involved.
Historically, the most common approach was two-stage lifting, where a model first
estimates keypoint locations in 2D and uses a second stage to “lift” the 2D pose to
3D (Lee & Chen, 1985; Barron & Kakadiaris, 2000; Taylor, 2000) and several early
deep-learning methods took this route as well.

The lifting itself can be performed, among others, by a fully connected feed-forward
net (Martinez et al., 2017b; Zhao et al., 2017), distance matrix regression (Moreno-
Noguer, 2017), exemplar matching (Chen & Ramanan, 2017) or probabilistic principal
component analysis (Tome et al., 2017).

The main benefit is that the two stages can be separately trained: the first only
needs 2D annotations, the second stage only needs poses but no image data. The
downside is that the lifting module has no access to detailed image information, subtle
shading cues, etc. This can make the task very ambiguous, but using an entire temporal
sequence of 2D poses as input can help in resolving ambiguities (Pavllo et al., 2019).

2.2.4 Regression vs. Heatmaps
As already discussed in Section 2.1.7 on page 13, the relative merits of predicting
heatmaps or coordinates directly has been an important research question, with
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soft-argmax (Luvizon et al., 2018; Nibali et al., 2018; Sun et al., 2018a) providing an
effective compromise. Gu et al. (2021) show that soft-argmax can be biased towards
the center of the image, and offer a method to compensate. Li et al. (2021c) introduce
sampling-argmax to improve the probabilistic calibration of soft-argmax heatmaps,
using the Gumbel-softmax reparametrization trick (Jang et al., 2017). Gu et al. (2022)
provide detailed comparison between argmax-based heatmap estimation and soft-
argmax. Yu and Tao (2022) propose to reduce quantization effects inherent in heatmap
discretization via randomized rounding. With the recent popularity of Transformers
in vision (see Section 2.2.14 on page 25), regression-based methods have seen some
success again, e.g., Lin et al. (2021a).

2.2.5 Absolute vs. Root-Relative Pose
Historically, the root-relative pose representation has been most common, without
estimating the root joint location in the camera space. In bottom-up volumetric heatmap
methods, estimating full heatmaps for the entire space would be too expensive, so
Fabbri et al. (2020) proposed compressed volumetric heatmaps to alleviate this issue.

More recently, the absolute pose estimation problem has been tackled with explicit
depth-order reasoning (Jiang et al., 2020), depth map estimation (Véges & Lőrincz,
2019, 2020a) or bounding box size (Moon et al., 2019).

Although it is called “absolute” pose estimation, the poses are still relative to the
camera. In case of a moving camera, this may not be ideal, since camera-space
motion intertwines human motion and camera motion. Henning et al. (2022) propose
BodySLAM to disentangle human and camera motion and provide pose estimates in
the world coordinate system, while GLAMR (Yuan et al., 2022a) performs a global
optimization over a full video sequence to get world-space predictions.

2.2.6 Multi-Person Pose Estimation
In many practical applications, it is common to encounter multiple people in the same
image, and it is important to estimate everyone’s pose. There are two main strategies
to do this: top-down and bottom-up processing. These terms are used in analogy to
types of parsing algorithms that output a tree-structured part–whole hierarchy (Aho
et al., 1986), and it is also common terminology in cognitive science (Kinchla & Wolfe,
1979). In the general sense, when building representations, the top-down order means
starting with some prior knowledge about the overall scene and progressively filling
in details about the parts. In contrast, bottom-up means finding parts or primitive
components first, and gradually merging them into larger, nested structures of a
part–whole hierarchy.

Note: In some human pose estimation texts, top-down vs. bottom-up refers to the
distinction between generative methods (optimizing over the parameters of a human
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shape model to match image evidence) and discriminative methods (learned mapping
from image features to poses directly, e.g., Sminchisescu et al., 2006). That sense is
unrelated to the multi-person strategy employed.

In the top-down multi-person strategy, the system first localizes each person using a
detector (Zou et al., 2019; Cao et al., 2021), then performs single-person pose estimation
on resized image crops around each detection separately. The main advantages are
conceptual simplicity and high accuracy. Indeed, it is simple, as good detectors
are readily available, and the pose estimation part only needs to tackle the simpler
single-person task. Further, this strategy handles different scales (people with different
apparent size in the image) very well, as the pose estimator always runs on resized crops
that depict the person at a consistent size. However, when bounding boxes overlap,
the task of the pose estimator can be ambiguous as it is unclear which person’s pose
it should estimate. One remedy can be to also feed the target person’s segmentation
mask to the pose estimator along with the RGB crop (Rajasegaran et al., 2022), at
the cost of having to run a segmentation model which is typically more compute
intensive than bounding box detection. Another disadvantage is that low-level feature
computation happens multiple times: once in the person detector and once for every
person crop. However, it is possible to avoid such redundant processing, as done in
the influential Mask R-CNN1 (He et al., 2020) approach. The main idea is to compute
backbone features just once, predict object proposals (approximate detections) and
then to send cropped feature maps (instead of cropped RGB images) to a pose prediction
module. Since the backbone features already have stronger semantics, the pose-specific
prediction head can be much more lightweight than a typical single-person pose
estimator network that starts from RGB input.

The bottom-up multi-person strategy first localizes all body parts in the image
without regard to who they belong to, and subsequently groups the body parts into
person instances. This grouping can be based on clustering associative embedding
vectors (Newell et al., 2017), or by predicting and following vector fields pointing
towards other parts of a person (Cao et al., 2017; Papandreou et al., 2018; Kreiss
et al., 2019). While most of this research has been on 2D pose, there are extensions
to 3D, as well (Liu et al., 2019a). The main advantage of the bottom-up strategy is
high-speed inference even in crowded scenarios, since the computational cost is nearly
independent of the number of people present in the image. It can also use broader
image context around people, which is cropped away in top-down methods. However,
typically bottom-up approaches suffer from lower accuracy, mainly because there can
be big differences in the scale of different people. Multi-scale estimation strategies can
alleviate these issues to some degree.

Single-stage (or single-shot) regression (Mehta et al., 2018; Sun et al., 2021; Jin et al.,
2022) has been proposed to alleviate a shortcoming of both top-down and bottom-up
strategies, namely that they consist of two separate stages, which are typically not

1Despite the name, Mask R-CNN can also estimate 2D human poses, not only segmentation masks.
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trained together end-to-end. In single-stage regression, whole poses can be read out
from numerical coordinate maps at the person center locations. Person centers are first
found at center-heatmap maxima, so in some sense two steps are still required, but
efficiency is improved. The disadvantage is that there is some spatial distance between
the readout location and the actual body joints, and convolutional networks have
difficulties in modeling such longer-range dependencies, leading to worse accuracy.
(Note that the “single-stage” terminology is sometimes also used in a different sense in
3D human pose estimation, to mean direct 3D prediction as opposed to first predicting
a 2D pose and then lifting it to 3D.)

Handling overlapping person instances has been a focus of several recent meth-
ods (Guo et al., 2021; Khirodkar et al., 2021; Wang & Zhang, 2022).

2.2.7 Supervision Level

Requiring full 3D-labeled supervision limits the set of applicable training datasets,
and therefore many weakly supervised, self-supervised and unsupervised approaches
have been proposed to tap into more data sources.

Mixing 2D data with 3D is a common form of weak supervision, already introduced
in Zhou et al. (2017). Since annotating exact depth is hard for humans, Pavlakos et al.
(2018) perform supervision based on depth order relations between joints (such ordinal
labels were also used in Pons-Moll et al., 2014).

Some methods can learn 3D pose purely from 2D annotations through adversarially
training a lifting network to yield plausible poses (Drover et al., 2018; Chen et al.,
2019a; Wandt et al., 2022). Mirrors appearing in in-the-wild scenes can provide an
opportunity for multi-view triangulation as well (Fang et al., 2021; Liu et al., 2021).

Kocabas et al. (2019) use 2D pose predictions from multi-view images, and triangula-
tion to self-supervise a 3D pose estimator. Iqbal et al. (2020) use the MannequinChallenge
dataset (Li et al., 2019c) showing people “frozen” in place while the camera moves
around the scene, as a form of multi-view self-supervision using a consistency loss.
Rhodin et al. (2018b) use novel view synthesis as an auxiliary pretraining task to obtain
geometric features that can be used to regress 3D pose from little labeled data.

Joo et al. (2021) perform test-time exemplar fine-tuning of the network weights, to
lift 2D labels to 3D pseudolabels.

Further similar works include Rhodin et al. (2018a); Wang et al. (2019a); Li et al.
(2020); Bouazizi et al. (2021); Roy et al. (2022).

2.2.8 Kinematic Constraints and Priors

Methods often employ some form of prior knowledge about the structure of humans
to resolve ambiguities and to avoid implausible predictions. Explicit priors have
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been especially required for weaker image representations. Furthermore, too strong
assumptions can be detrimental if the extracted image-based evidence is strong already.

Akhter and Black (2015) measured pose-conditioned joint angle limits to model
plausibility. Bone lengths offer another proxy for pose plausibility, and making
predictions as bones can therefore exploit such priors better (Sun et al., 2017). The
kinematic chain space (KCS; Wandt et al., 2018) representation takes this further and also
considers the angles between bones. Pavlakos et al. (2019) use a variational autoencoder
(VPoser) to model pose plausibility, while Tiwari et al. (2022) train an implicit neural
distance field in pose space.

Another useful constraint is to avoid the interpenetration of different body parts of a
person (Bogo et al., 2016; Pavlakos et al., 2019), humans and scene objects (Hassan et al.,
2019) as well as collisions of multiple humans (Jiang et al., 2020; Fieraru et al., 2021c).

Reconstructing objects and humans together can also help with obtaining a more
consistent spatial arrangement of them (Zhang et al., 2020a; Dabral et al., 2021;
Bhatnagar et al., 2022).

2.2.9 Occlusion Handling
Occlusions are a major problem in 3D pose estimation. Pose estimation is usually
defined in an amodal manner, i.e., we are interested in inferring even the occluded
body parts. This stands in contrast to modal tasks, such as typical formulations of
instance segmentation, where occluded object parts are not inferred. Mehta et al.
(2018) proposed occlusion-robust pose maps (ORPM), an improvement over location
maps (Mehta et al., 2017b), where information about occluded joints are predicted at
non-occluded parts of the body. PARE (Kocabas et al., 2021a) improves the occlusion
robustness of parametric mesh estimation by replacing global average pooling with
attention-weighted pooling.

In the lifting paradigm, occlusion can be modeled as missing 2D joint detections.
Carissimi et al. (2018) fill in those missing positions based on the non-occluded ones
using a denoising autoencoder. Cheng et al. (2019, 2020) model (self-)occlusions in
video, within a temporal convolutional lifting network.

Further approaches tackling occlusions include Wang et al. (2019b); Zhang et al.
(2020b); Qammaz and Argyros (2021); Khirodkar et al. (2022); Liu et al. (2022a).

2.2.10 Motion, Tracking, Temporal Modeling
There are several aspects to modeling human motion, and several different tasks.

Overall, as we mentioned in Section 2.1 on page 9, the dominant approach in 3D
pose estimation before deep learning used to be some form of tracking, i.e., estimating
poses over time, in image sequences. With the advent of deep learning–based pose
estimators, the accuracy of single-frame estimation has increased substantially, such
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that temporal estimation is no longer indispensable. Nevertheless, temporal reasoning
is still beneficial, especially in more difficult, noisier sequences, as well as for analyzing
derivatives of position over time (e.g., velocity, acceleration).

Image-Based Pose Tracking. Tekin et al. (2016) align a temporal stack of images via
motion compensation and predict their poses jointly. Sun et al. (2019) estimate temporal
joint offsets between two neighboring frames (similar to optical flow). Girdhar et al.
(2018) propose a 3D Mask R-CNN based on tube proposals for 2D pose tracking.
TesseTrack (Reddy et al., 2021) is an end-to-end trained method that builds a 4D
spatiotemporal feature tensor to estimate 3D pose tracks. VoxelTrack (Zhang et al., 2023)
performs tracking based on volumetric feature grids. GLAMR (Yuan et al., 2022a)
performs motion infilling and global multi-person optimization for prediction in world
coordinates.

Forecasting, Inbetweening, Denoising, Smoothing. Performing temporal reasoning
on the level of poses (instead of images) can be a way to reduce the dimensionality of
the problem, to use more lightweight architectures and speed up the learning. The
individual poses may be extracted from images using a single-frame pose estimator.
Pose forecasting means predicting poses after time t, based on the poses up to time t.
Martinez et al. (2017a) and Hossain and Little (2018) use recurrent networks for
forecasting (GRU and LSTM, respectively). Cao et al. (2020) also take into account the
scene layout, while Kundu et al. (2020) and Wen et al. (2022) jointly model the motions
of two people.

Pose inbetweening, inpainting, infilling or interpolation is the task of predicting
missing poses in a sequence (forecasting can be understood as outpainting, or extrapo-
lation). Denoising, smoothing or refinement also modifies poses that were given in
the input, to make the motion more plausible. VIBE (Kocabas et al., 2020) applies a
GRU network on the pose sequence and model plausibility through an adversarial
discriminator. Other inpainting or sequence refining methods include McLaughlin
and Martinez del Rincon (2018); Hernandez et al. (2019); Kaufmann et al. (2020); Véges
and Lőrincz (2020b); Yuan et al. (2022a); Zeng et al. (2022). Rajasegaran et al. (2022)
showed that tracking human pose in 3D can also help with temporally consistent
identity association (a classic focus in multi-person tracking). Pavllo et al. (2019)
perform 2D-to-3D temporal pose lifting with atrous temporal convolutions.

2.2.11 Physical Dynamics Modeling

Using physics-based models to obtain plausible motions is a long-researched direc-
tion (Brubaker et al., 2009). This means modeling body parts as having mass, and
considering the forces acting on them. Physics can constrain the predicted pose
sequences to exclude impossible forces and accelerations, foot skating or other artifacts.
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Physics-based approaches in 3D human pose estimation from recent years in-
clude Rempe et al. (2020); Shimada et al. (2020); Xie et al. (2021); Yuan et al. (2021,
2022b). Li et al. (2019b) also model human–object interactions using a physics-based
approach. Furthermore, some methods use gravity as a scale reference (Bieler et al.,
2019; Dabral et al., 2021), which is another type of physics-based information.

2.2.12 Multi-View Reconstruction

To reduce the inherent ambiguity in monocular 3D inference, several methods tackle
multi-view human pose estimation. The straightforward approach is to perform 2D
estimation from each view and triangulate the resulting poses using basic multi-view
geometry (Hartley & Zisserman, 2004).

However, such direct triangulation of points does not take into account image details,
the full multi-modality and uncertainty of the 2D keypoint estimates, nor does it model
the 3D human pose prior. Iskakov et al. (2019) introduced learnable triangulation,
where 2D feature maps are backprojected into a volumetric, voxel-based feature grid,
which is further processed to yield volumetric joint heatmaps.

Pirinen et al. (2019) use deep reinforcement learning to select the best camera
viewpoints for triangulation.

Other learned multi-view methods include Remelli et al. (2020); Dong et al. (2021);
Bartol et al. (2022); Ye et al. (2022).

2.2.13 Uncertainty, Probabilistic Output and Multiple Hypotheses

A single point estimate for the location of each joint is not always sufficient as output.
For example, if we want to perform temporal smoothing or tracking, it is useful to
know how much we should trust each predicted joint location. In heatmap methods
typical proxies for uncertainty can be the maximum value or the heatmap entropy.

However, a single position and a scalar uncertainty may not be informative enough
if the pose is ambiguous and the predictive distribution is multi-modal. Estimating
multiple hypotheses can be a way to model this multi-modality (Jahangiri & Yuille,
2017; Li & Lee, 2019; Li et al., 2022b; Zheng et al., 2022b). However, a finite set of
hypotheses does not necessarily represent the full distribution well.

Recently, there has been progress in modeling arbitrary probability distributions
through normalizing flows (NF; Kobyzev et al., 2020), which can also be used to
model the rich and complicated multi-modal predictive distribution in pose estimation.
Wehrbein et al. (2021) condition an NF with the 2D pose, to perform probabilistic pose
lifting to 3D. Kolotouros et al. (2021) perform image-based 3D human mesh estimation
with NFs. Other methods using NFs for 3D pose include Zanfir et al. (2020); Li et al.
(2021a); Hirschorn and Avidan (2022).
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Even more recently, as diffusion probabilistic models (Sohl-Dickstein et al., 2015)
have become the state-of-the-art in image generation (Ho et al., 2020), researchers have
been looking to harness diffusion models for other tasks, too. DiffPose (Holmquist &
Wandt, 2022) and DiffuPose (Choi et al., 2022) are pioneering these methods in pose
estimation.

2.2.14 Transformers
Originally introduced in natural language processing, the Transformer architec-
ture (Vaswani et al., 2017) has seen success in computer vision tasks recently (Khan
et al., 2022), including in human pose estimation.

Most of these approaches still use CNNs as backbone feature extractors. Yang
et al. (2021) perform heatmap-based 2D pose estimation with a Transformer encoder
on top of a CNN. Others perform direct coordinate regression. TokenPose (Li et al.,
2021f), PRTR (Li et al., 2021d) and Poseur (Mao et al., 2022) use keypoint queries for
2D pose estimation, similar to how DETR (Carion et al., 2020) uses object queries.
METRO (Lin et al., 2021a) and Mesh Graphormer (Lin et al., 2021b) perform full 3D
pose and mesh recovery, with joint and vertex queries. Wang et al. (2021b) perform
learnable multi-view triangulation in their multi-view pose Transformer.

In contrast to the above methods that operate on CNN backbone features, Dosovitskiy
et al. (2021) introduced the Vision Transformer (ViT), which consists exclusively of
attention layers, operating on image patches. ViT has also been adapted to 2D pose
estimation (Xu et al., 2022) and spatiotemporal 3D human pose estimation (Zheng
et al., 2021).

2.2.15 Applications
3D human analysis has uses in many other, downstream research tasks such as action
recognition (Wang et al., 2014b; Iqbal et al., 2017; Luvizon et al., 2018; Liu et al., 2019b;
Luvizon et al., 2020), as well as practical applications.

The applications include fitness (Fieraru et al., 2021a), sport (Colyer et al., 2018),
medicine (Belagiannis et al., 2016; Chen et al., 2018; Bigalke et al., 2021; Cornman et al.,
2021), surveillance (Cormier et al., 2022; Hirschorn & Avidan, 2022), art analysis (Zhao
et al., 2022), autonomous driving (Cong et al., 2022; Zanfir et al., 2022; Zheng et al.,
2022a), human–robot interaction (Villani et al., 2018; Hentout et al., 2019; Robinson
et al., 2022; Sampieri et al., 2022) and biomechanical movement science (Seethapathi
et al., 2019).

Approaches developed for human pose estimation have also proved useful in animal
pose estimation, for pigeons (Waldmann et al., 2022), dogs (Kearney et al., 2020),
rodents (Dunn et al., 2021), large mammals (Zuffi et al., 2019) and primates (Sanakoyeu
et al., 2020).
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Further Reading
As the literature on 3D human analysis is vast, the preceding overview was necessarily
only a small selection. Good resources for further reading include survey papers and
textbooks.

Survey Papers. For a comprehensive review of pre–deep learning developments, we
recommend the survey articles Aggarwal and Cai (1999), Gavrila (1999), Bray (2001),
Moeslund and Granum (2001), Moeslund et al. (2006), Forsyth et al. (2006), Wang et al.
(2003) and Poppe (2007).

Sarafianos et al. (2016) already cover early deep learning–era methods. Among
more recent surveys, we especially recommend the CVIU papers Chen et al. (2020),
Desmarais et al. (2021) and Wang et al. (2021a).

Further relevant surveys are Toshpulatov et al. (2022), Dubey and Dixit (2022),
Kumar et al. (2022), Lan et al. (2022), Liu and Mei (2022), Dang et al. (2019), Zhang
et al. (2021), Ji et al. (2020), Manesco and Marana (2022), Munea et al. (2020), Perez-Sala
et al. (2014) and Bartol et al. (2020). Additonally, Tian et al. (2022) specifically survey
mesh estimation methods.

Textbooks. Several textbooks cover pre–deep learning techniques in human analysis.
We specifically recommend Visual Analysis of Humans: Looking at People (Moeslund
et al., 2011, esp. Part II), Human Motion: Understanding, Modelling, Capture, and Animation
(Rosenhahn et al., 2008, esp. Chapter 8), and the Handbook of Virtual Humans (Magnenat-
Thalmann & Thalmann, 2004, esp. Chapter 3). The book People Watching: Social,
Perceptual, and Neurophysiological Studies of Body Perception (Johnson & Shiffrar, 2012)
discusses the neuroscientific basis for body perception, also touching upon aspects of
machine perception.
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3.1 Deep Learning
Modern computer vision cannot be imagined without machine learning (ML), and
particularly deep learning (DL). Progress over the last decade has especially underlined
the importance of learning representations from large-scale data in a fundamentally
statistical and probabilistic paradigm (Sutton, 2019).

In the following, we give a bird’s eye view on what machine learning is, and how
deep neural networks were developed over time. Afterwards, we discuss specific
architectures and components of the networks we use throughout this thesis.

3.1.1 Machine Learning Fundamentals
Paraphrasing Mitchell (1997), machine learning is the study of algorithms whose
performance improves at some given task through experience. For this, it is important
to define the task (e.g., object categorization, 3D human pose estimation), to concretize
what the experience is (e.g., image observations along with human-annotated labels)
and to design quantitative measures of performance (e.g., classification accuracy,
percentage of correct keypoints).

The essence of machine learning is the requirement that the algorithm’s performance
should improve on the overall task, not only on the parts it has experienced already.
This is called generalization, which requires capturing stable patterns in the data while
ignoring coincidences and noise. If a method fails to capture a real pattern, it is
underfitting, while if it captures noise or coincidence, it is overfitting.

Typically, machine learning algorithms are applied in two distinct phases (though
the above definition does not require this). During the training phase, the system is
adjusted to reduce its error on the training data, which constitutes the “experience” in
Mitchell’s terms. During the inference phase, the trained model is either evaluated on a
held-out test set or placed into production to accomplish something useful.
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What sets apart machine learning from other uses of mathematical optimization and
statistics is its open ended, inductive nature, and the willingness and focus on trading
off performance on the known training set in exchange for test-time performance.
Machine learning can therefore be seen as the search for computational solutions to
the problem of induction (Henderson, 2022): deriving general rules from a limited set
of observations. This requires inductive biases, i.e., fundamental assumptions about
the nature of patterns we are seeking, without which no learning is possible (Wolpert,
1996). A core difference between machine learning model classes then lies in what
inductive biases they encode. Such inductive biases include the built-in translation
equivariance of convolutional neural networks and various smoothness assumptions
expressed in regularization techniques to combat overfitting. A core inductive bias
expressed by today’s deep learning neural network architectures is that the learned
concepts should build a compositional hierarchy (Goyal & Bengio, 2022).

3.1.2 A Brief Neural Network History
Deep learning can be considered synonymous with machine learning using multi-
layer neural networks—except with fewer biological connotations. Neural network
research has a long and tumultuous history, alternating between popularity and
obscurity (Anderson & Rosenfeld, 2000; Schmidhuber, 2015; Goodfellow et al., 2016;
Baldi, 2021).

Perceptron. Mathematical modeling of neurons started with McCulloch and Pitts
(1943), and gained broader interest with Rosenblatt’s (1958) perceptron. He also
proposed multilayer perceptron variants (MLP; Rosenblatt, 1962), though effective
training mechanisms were not yet known for those. Rosenblatt considered the
perceptron “first and foremost a brain model, not an invention for pattern recognition”;
he wanted to understand natural instead of artificial intelligence. The neuroscientific
and the engineering approaches have coexisted in the field of neural networks since
then as well, with some strands of research only being concerned with one or the other,
and others attempting to cross-pollinate ideas between them.

Following Minsky and Papert’s (1969) in-depth analysis and critique of the percep-
tron’s capabilities, interest in neural nets declined, especially in AI research (Olazaran,
1996).

Neocognitron. Inspired by Hubel and Wiesel’s (1962) discovery of “simple” and
“complex” cells in the cat visual system, Fukushima (1980) developed the neocognitron,
a shift-robust image classifier neural net, trained layerwise. The alternating simple
and complex layers performed local feature extraction and pooling, respectively.
The neocognitron was intended both as neuroscientific attempt at modeling the
brain (Fukushima, 1980), as well as an engineering approach for building artificial
pattern recognition systems (Fukushima & Miyake, 1982).
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Backpropagation. A major milestone towards effective neural net training was the
development of the error backpropagation algorithm (Werbos, 1982; Rumelhart et al.,
1986). This enabled computing error gradients w.r.t. the parameters, for use in
gradient descent optimization, to train the entire network at once instead of layerwise
heuristics. In handwritten digit recognition, LeCun et al. (1989) successfully used
backpropagation in training a neocognitron-like network (i.e., also a “multi-stage
Hubel–Wiesel architecture,” LeCun et al., 2010), consisting of convolutional layers
followed by an MLP. This work was motivated purely from an engineering perspective.
Although not yet called so in this work, such architectures are known today as
convolutional neural networks (CNN).

Shallow ML. During the 1990s and 2000s, mainstream computer vision used “shallow”
ML methods, such as support vector machines (SVM; Boser et al., 1992; Cortes &
Vapnik, 1995), on top of hand-engineered feature extractors. One reason for this was
the better theoretical grasp on these models (Vapnik, 1995; Schölkopf & Smola, 2002),
while neural nets were often regarded as tricky to train and too heuristic (Goodfellow
et al., 2016).

Renewed Interest. LeCun et al.’s (1998) improved LeNet-5 architecture showed that
CNNs can be competitive with (and in some respects superior to) state-of-the-art SVM-
based approaches in handwritten digit recognition. LeNet used convolutional, average-
pooling and fully connected layers in a conv-pool-conv-pool-fc-fc-fc sequence, with
hyperbolic tangent (tanh) nonlinearities in between. CNN improvements continued,
however, it was not until AlexNet’s (Krizhevsky et al., 2012) decisive victory in the
2012 ImageNet Large Scale Visual Recognition Challenge (Russakovsky et al., 2015)
that they became a staple of computer vision. AlexNet was larger than LeNet,
with 5 convolutional and 2 fully connected (MLP) layers. Furthermore, it used the
rectified linear unit (ReLU) activation function (Fukushima, 1969; Nair & Hinton, 2010;
ReLU(x) = max{0, x}) instead of tanh. ReLU’s main advantage over tanh is that it does
not saturate (on positive input), allowing better gradient flow and helping with the
vanishing gradient problem.

Training AlexNet was, in large part, made possible through harnessing the massive
parallel computational power of graphics processing units (GPU), originally designed for
an entirely unrelated purpose—rasterizing video game graphics. GPUs have continued
to be indispensable in deep learning to this day.

Since then, numerous architectures and techniques have been designed for deep
neural networks, a selection of which we discuss in the following.
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3.1.3 Architectures
Over the last decade, deep learning has converged to a modular paradigm, where
deep networks for particular applications use off-the-shelf, so-called backbone networks,
designed and pretrained by organizations with access to large-scale compute for
hyperparameter optimization. The backbone extracts rich features for use in subsequent,
application-specific layers or modules, often called heads. Such reuse of building blocks
originally trained for different objectives than the target application is a form of transfer
learning. In the following, we review some important backbone architectures that are
still influential today and are relevant to the rest of the thesis.

VGGNet (Simonyan & Zisserman, 2015) has 13–16 conv layers and a more uniform
design, with exclusively 3×3 filter kernels, inspired by Cires, an et al. (2011). Interestingly,
despite having been proposed more than 8 years ago, one application where VGGNet
still endures is in state-of-the-art image generation models (including the influential
Stable Diffusion, Rombach et al., 2022), for computing perceptual losses (Johnson et al.,
2016; Zhang et al., 2018). We also use it for this purpose in Chapter 9.

Inception (Szegedy et al., 2015), a.k.a. GoogLeNet, breaks with the strict sequential
structure of earlier networks, and performs multiple convolutions on parallel branches
with different kernel sizes and fuses their results back together. With 21 levels
of convolutions, training it is more difficult, requiring intermediate supervision
throughout the network, attaching auxiliary classication heads branching out from
different layers, giving more direct gradient flow to early layers. One application of the
Inception network today is in computing the Inception Score (Salimans et al., 2016) and
Fréchet Inception Distance (Heusel et al., 2017) evaluation metrics for image generation
methods.

ResNet (He et al., 2016a) adds shortcut or skip connections to very deep networks, which
allows for more direct gradient flow. However, He et al. consider it “unlikely” that the
ResNet’s benefit lies in avoiding the vanishing gradient problem, since that problem was
largely avoided already with ReLU activations, better initialization (Glorot & Bengio,
2010) and batch normalization (Ioffe & Szegedy, 2015, see below). Instead, to explain
the ResNet’s success, Veit et al. (2016) propose to understand them as ensemble models.

The original ResNet does not allow direct gradient flow across the individual residual
blocks. The skip connections are used only within the blocks and do not build an unim-
peded end-to-end pathway. ResNetV2 (He et al., 2016b), however, reorders the activation
and normalization layers, enabling direct gradient flow throughout the network.

Besides V1 and V2, a so-called ResNetV1.5 is also often used. This is a slight
modification of ResNetV1. In V1, the striding in the bottleneck blocks happens on
the 1×1 conv before the 3×3, while in V1.5 the stride is on the 3×3 conv. The PyTorch
framework, for example uses this V1.5 variant for their main ResNet implementation,
while TensorFlow uses the original V1 formulation.
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For ImageNet training, three main concrete ResNet architectures are used, both in
V1 and V2: ResNet-50, ResNet-101 and ResNet-152, with the numbers indicating the
number of layers in each configuration. In the technical chapers, we make extensive
use of these ResNet architectures, especially ResNet-50.

MobileNets (Howard et al., 2017) are efficient convolutional architectures designed for
use in mobile phones and other embedded devices. They employ depthwise separable
convolutional modules (Sifre, 2014), which consist of a sequence of two convolutions:
one depthwise and one pointwise. Depthwise convolution does not allow inter-channel
interaction and filters each channel separately, while pointwise (a.k.a. 1×1) does the
opposite: it allows the intermixing of channels but no spatial interactions. According to
the experiments by Howard et al. (2017), this factorization provides a drastic reduction
in computational cost (8–9×) and parameter count (6–7×), while empirically only
reducing accuracy by 1% on ImageNet.

MobileNetV2 (Sandler et al., 2018) introduces inverted residual blocks. While ResNet’s
residual blocks perform 3×3 convolutions on feature tensors whose channel dimension
is first reduced via 1×1 convolution then expanded back, MobileNetV2 inverts this.
Now the number of channels is increased before the 3×3 convolution, and the result is
compressed to lower dimensionality afterwards. This remains efficient because the
3×3 convolution is done depthwise, as in MobileNetV1.

MobileNetV3 (Howard et al., 2019) is the result of neural architecture search (Zoph &
Le, 2017; Elsken et al., 2019; Ren et al., 2022) (NAS). NAS is a part of the automated
machine learning (AutoML) paradigm (Hutter et al., 2019) and can be seen as a next step
towards learning more from data: as deep learning replaced hand-engineered features,
NAS is supposed to obviate the need for hand-engineering neural architectures as
well. However, most NAS approaches only learn how to best arrange a set of known
modules, for example MobileNetV3 employs squeeze-and-excitation modules (Hu
et al., 2018), a module that had to be hand-designed first.

EfficientNet. Many neural net architectures are actually families of architectures, such
as ResNet-50, 101 and 152 with increasing computational cost and accuracy. Tan and Le
(2019) introduce a better way to design these architecture families, through compound
scaling, where depth, width and spatial resolution are scaled jointly. Besides producing
better-scaled ResNet and MobileNet families, they also introduce a new family via
neural architecture search, the EfficientNet, optimized for number of floating-point
operation (FLOPS).

EfficientNetV2 (Tan & Le, 2021) is again a NAS-based architecture, but optimized for
training speed instead of FLOPS. FLOPS often do not correspond well with actual
speed, since some operations have better dedicated hardware support than others.
Another change in V2 is that some of the depthwise separable convolutional blocks are
replaced by vanilla 3×3 convolutions, as these operations have better built-in hardware
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support in tensor processing units (TPUs), and TensorCores of GPUs. The uniform
scaling rule of V1 is also changed, and V2 scales later stages more strongly.

When comparing EfficientNets to ResNets, one important difference is that Efficient-
Nets contain squeeze-and-excitation modules (Hu et al., 2018), which enable a weak form
of information exchange between spatially distant locations in the feature maps.

In this thesis, we apply EfficientNetV2 in Chapter 8, and found it to work well in 3D
human pose estimation.

3.1.4 Normalization Layers

BatchNorm. Ioffe and Szegedy (2015) introduced batch normalization (BatchNorm)
layers, first for the Inception architecture. While input data normalization is an old
and established technique, the novelty of BatchNorm lies in normalizing the internal
activations of a neural network. During training, this is done across all examples of a
minibatch but separately for each feature map. At inference time, the normalization is
done with stored statistics.

Why BatchNorm works so well is not fully understood yet. The original motivation
was to reduce the internal covariate shift during training. This refers to the phenomenon
that, as each layer is trained, the statistical distribution of the activations may drift,
forcing the next layer to constantly “play catch-up” and adapt to it. Santurkar et al.
(2018) challenge this reasoning, and rather argue that the improvements are due to a
smoother loss landscape induced by the BatchNorm layers. Luo et al. (2019) understand
it in terms of an implicit regularization effect.

The main disadvantages of BatchNorm are the discrepancy between the training-time
and the inference-time behavior of the layer, as well as the complex cross-example
interactions that may require more careful minibatch sampling strategies. BatchNorm
inspired further normalization techniques that address these shortcomings, e.g., batch
renormalization (Ioffe, 2017), which addresses the train-test discrepancy.

While BatchNorm still remains a very effective and popular technique today, there
are efforts to replace it with better-behaved methods such as LayerNorm (Ba et al.,
2016), e.g., in the Vision Transformer (ViT; Dosovitskiy et al., 2021) and the ConvNeXt
architecture (Liu et al., 2022b). There are also works that seek to eliminate the need for
any normalization layers at all (Shao et al., 2020; Brock et al., 2021).

GroupNorm. To avoid the cross-example interactions of BatchNorm, group nor-
malization (GroupNorm; Wu & He, 2018) performs the normalization only within
one example’s features. The feature channels are split up into multiple groups and
normalization happens across different feature channels of the same group, as well as
spatially. This has been shown to perform better in the small-batch regime, and we also
apply it in Chapter 9 for this reason. We have also successfully applied GroupNorm
for person-centric multi-task learning (Pfeiffer et al., 2019).
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Ghost BatchNorm. Similar to the grouping of channels in GroupNorm, the technique
of ghost batch normalization (Hoffer et al., 2017) splits up a minibatch and performs
BatchNorm only within each chunk. While originally developed for large-batch
training, Summers and Dinneen (2020) also effectively apply it in the small and
medium-batch regime as a regularizer. In Chapter 8, we use it in the context of
multi-dataset learning of 3D human pose estimation.

3.1.5 Optimizers
The typical way to optimize deep neural networks is by gradient descent (Cauchy,
1847). That is, the network parameters θ are updated by first computing the gradient of
the loss function L(θ) w.r.t. θ (using backpropagation) and taking a step in the negative
gradient direction (direction of steepest descent). The scaling factor of the step size is
called the learning rate η.

When the loss function is evaluated by taking into account the whole training dataset,
the algorithm is called batch gradient descent. If it only takes into account one random
example from the dataset, then it is referred to as stochastic gradient descent (SGD).
However, the typical way to train deep nets is minibatch stochastic gradient descent,
where the loss is computed on a smaller but non singleton subset of the examples.
Since using minibatches (often also just called “batches”) is so common, SGD without
further qualifiers typically means minibatch SGD.

Vanilla SGD chooses its update direction purely based on the current minibatch, which
can lead to undesired oscillations. The momentum technique (Polyak, 1964) improves
on this by using an exponential moving average of the gradient history, such that
oscillating gradients are smoothed out and steps in such directions become smaller.

Weight decay (Hanson & Pratt, 1988) furthermore subtracts a certain fraction of the
previous weight value. In SGD, this is equivalent to ℓ2 regularization, i.e., adding a
squared penalty on the weights to the loss function.

AlexNet (Krizhevsky et al., 2012) was trained using SGD with momentum and
weight decay. Since then, more sophisticated adaptive optimizers have been invented.
A detailed overview is provided in Ruder (2016).

RMSprop. One disadvantage of SGD is that it handles every parameter the same way,
even though they may have very different natural scales. RMSprop (Tieleman et al.,
2012) addresses this by rescaling the gradients by their exponentially decaying root
mean square (RMS) values. This way, the optimization process becomes invariant to a
rescaling of the parameters.

Adam. Bringing together the benefits of momentum and RMSprop, Kingma and Ba
(2015) propose Adam (adaptive moment estimation). Adam keeps track of exponentially
decaying averages of the gradients (like momentum) as well as the squared gradients
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(like RMSprop). Additionally, these averages are bias-corrected to take into account
the fact that they are initialized at zero, and therefore are biased towards zero in the
initial phase of training.

AdamW. Researchers often combine multiple techniques together, but this can lead
to unexpected interactions. As Loshchilov and Hutter (2019) show, ℓ2 regularization
and weight decay are no longer equivalent when using Adam. They find that weight
decay achieves better results than ℓ2 regularization, and it allows the weight decay
factor to be selected independently of the learning rate. This weight-decayed version
of Adam is called AdamW. In our earlier work presented in this thesis, we use the
Adam optimizer, and later on we switch to AdamW.

Choosing a “best” among these optimizers is difficult, since the choice of hyper-
parameters can greatly affect their performance. Sivaprasad et al. (2020) perform
a systematic study using the same hyperparameter optimization budget for each,
and find Adam to perform best in their experimental setup. This, however, does not
necessarily generalize to every task and dataset.

3.1.6 Further Reading
Machine Learning Books. For details on machine learning, we refer the reader to
the textbooks by Murphy (2022), Alpaydin (2021), Hastie et al. (2009), Bishop (2006),
Mitchell (1997) and Shalev-Shwartz and Ben-David (2014).

Deep Learning Books. Specifically for deep learning, the books by Goodfellow et al.
(2016), Baldi (2021), Chollet (2021) and Prince (2022) can be recommended.

3.2 Geometry of Image Formation
There is a school of thought that understands computer vision as inverse graph-
ics (Grenander, 1978), i.e., figuring out what are the objects, lights, materials, etc. in
the scene that gave rise to the image. Whether this view truly encompasses all of
vision—including higher-level semantics, saliency, etc.—is debatable. Nevertheless,
understanding how the 3D world gets mapped to our input image (i.e., the forward
process) is certainly important for the kind of vision that aims to infer 3D structure (an
inverse process), e.g., 3D human pose estimation.

Here, we summarize the most important pieces of background knowledge about
the 3D geometry of image formation, which underlie the algorithms presented in the
technical chapters of this thesis.

More detailed treatment of this topic can be found in Ma et al. (2004) and Hartley
and Zisserman (2004).
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3.2.1 Pinhole Cameras

A simple perspective camera model is the pinhole camera model. Its extrinsic parameters
describe the camera’s location and orientation in the world coordinate system, while
the intrinsic parameters specify where each incoming ray of light ends up on the final
pixel grid.

We use the the homogeneous coordinate representation of points, since this allows both
rotations and translations to be expressed as matrix multiplications. Let us denote
conversion to and from the homogeneous representation (in both 2D and 3D) with
Π−1 and Π, respectively:

Π−1

XY
Z

 =


X
Y
Z
1

 , Π



X
Y
Z
W


 =

X/W
Y/W
Z/W

 , (3.1)

Π−1

([
x
y

])
=

xy
1

 , Π

xy
w

 =

[
x/w
y/w

]
. (3.2)

(3.3)

The projection operator Π divides by the last coordinate and drops it—this is per-
spective projection with the last coordinate understood as the depth. The unprojection
operator Π−1 increases the dimensionality by one and places the point at unit depth
along the new dimension.

The world point P = (X, Y, Z)T gets transformed to the image point p = (x, y)T as

p = Π
(
K [R | t] Π−1(P)

)
, (3.4)

where R ∈ SO(3) is a rotation matrix expressing the camera orientation, t ∈ R3 is a
translation vector, and K ∈ R3×3 is the intrinsic matrix.

The intrinsic matrix K is built from the horizontal and vertical focal lengths fx, fy
(sometimes decomposed into optical focal length, sensor size and resolution), the skew
s and the principal point coordinates cx and cy as

K =

fx s cx
0 fy cy
0 0 1

 . (3.5)
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3.2.2 Lens Distortion

Real cameras with lenses introduce additional distortions (e.g., radial and tangen-
tial) compared to the ideal pinhole camera model. This is modeled as a nonlinear
transformation φ : R2 → R2, before applying the intrinsic matrix K.

p = Π
(
K Π−1

(
φ
(
Π
(
[R | t]Π−1(P)

))))
, (3.6)

These intermediate two-dimensional coordinates before applying K are also called
normalized image coordinates, and are importantly independent of the focal length.

In the 12-parameter formulation used by the OpenCV library (Bradski, 2000),
the distortion function φ(·) uses the following coefficients: six radial coefficients
k1, k2, k3, k4, k5, k6, two tangential coefficients p1, p2, as well as four thin prism coeffi-
cients s1, s2, s3, s4. The distorted point is calculated as follows:

r = ∥p∥, (3.7)

a =
1 + k1r

2 + k2r
4 + k3r

6

1 + k4r2 + k5r4 + k6r6
, (3.8)

b = 2[p2, p1]p, (3.9)
c = r4[s2, s4]

T + r2[p2 + s1, p1 + s3]
T , (3.10)

φ(p) = (a+ b)p+ c. (3.11)

There is no closed-form formula for the inverse operation φ−1, but it can be approxi-
mated with numerical, iterative algorithms. For example, if p̃ is the distorted point,
we can approximate φ−1(p̃) by an iterative sequence of estimates starting at p0 = p̃,
then applying a rearranged version of (3.11):

pn+1 =
p̃− cn − bnpn

an
, (3.12)

where the values an, bn, cn are computed from pn as in (3.8) to (3.10). We found
p5 ≈ φ−1(p̃) to already be a good approximation. This inverse computation is needed,
for example, if we estimate 2D keypoints on a distorted image and need to know where
those points would appear on a non-distorted image. We would also need the same
computation for warping an image to simulate the effect of distortion.

While this 12-parameter formulation is usually sufficient for many practical applica-
tions, we note that more detailed distortion models are also available (Schops et al.,
2020).
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3.2.3 Perspective Undistortion

Objects projected far from the principal point can appear severely distorted. In our 3D
human pose estimation approaches we counter this problem by reprojecting the image
onto a virtual camera, whose orientation is changed (R′) such that its principal point is
at the person’s bounding box center. The intrinsics are adjusted (K ′) to have the person
fill the desired crop resolution, to remove the skew s and have equal focal length
in horizontal and vertical direction. Two cameras with a shared optical center but
different orientations and intrinsics yield images that map onto each other according
to a homography H ∈ R3×3:

p′ = Π
(
H Π−1(p)

)
, (3.13)

H = K ′R′RTK−1, (3.14)

where p′ is the image point in the new camera’s coordinate frame. This homography
can be used to warp the input image to achieve perspective undistortion.

In the presence of lens distortions, the warping is more complicated, and the
transformations needs to be computed for the coordinates of every individual pixel to
get a warp field, and this can be expensive. (Undistortion as a preprocessing step can
therefore make sense in case of offline processing or training.)

The interpolation method and the issue of anti-aliasing need to be considered and
evaluated when performing this kind of warping, as they can have considerable impact
on the resulting image quality and hence the pose estimation accuracy as well.

If we make pose predictions based on the reprojected image of this virtually rotated
camera, we need to transform the result back, using the rotation RR′−1.

We have used this reprojection method starting from (Sárándi et al., 2018a) but did
not quantitatively evaluate its impact. Since then, Yu et al. (2020a) have shown that
naive cropping performs significantly worse than the perspective-correct cropping.

However, all this relies on knowing the camera intrinsics. For the case that they are
unknown, Kocabas et al. (2021b) have proposed a method to estimate them.

3.2.4 Weak vs. Full Perspective

The so-called weak-perspective camera model is often adopted in 3D human pose
estimation. In the weak-perspective model, the points within the same object (e.g.,
the joints of one 3D pose) are projected as if they had the same depth (Z) coordinate.
In other words, there is some perspective effect because different objects are scaled
differently, but within one object the perspective effects are ignored. This can be a
convenient simplifying assumption because it means that, e.g., moving a person twice
as far away from the camera would result in exactly scaling the projected coordinates
by one half.
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Figure 3.1: Single-image 3D human pose estimation is the computer vision task of
estimating the 3D location for a set of anatomical landmarks of the target person.

The assumption is a reasonable approximation only if the distance of the person
from the camera is much larger than the depth differences between individual body
joints. Kissos et al. (2020) found that this often does not hold in practice, e.g., on the
3DPW dataset.

3.3 Problem Formulation and Terminology
The task of 3D human pose estimation has been formalized in various ways (in terms
of positions, angles, etc.). In this thesis, we understand it as a 3D keypoint localization
task from a color image, as illustrated in Figure 3.1.

The goal is to find a good function (hypothesis) h, mapping from the space of RGB
images to the space of poses, i.e., h : RH×W×3 → RJ×3, where J is the number of body
joints in the particular skeleton format. We will interchangeably refer to these as
keypoints, joints or landmarks.

The joints are usually arranged into a kinematic tree, where the edges are referred to
as bones or limbs. E.g., we have the left lower arm bone connecting the left wrist joint
to the left elbow joint.

3.4 Evaluation Metrics
To compare the quality of different human pose estimation models, we need quantitative
evaluation metrics. Computing a metric at the end of an experiment helps decide
whether, e.g., a particular model change has led to an improvement. However, a
model’s behavior is much richer than a single number could represent. It is important
to keep the wider application context in mind, as we rarely estimate a pose purely for
its own sake and some kinds of errors may cause larger problems in some applications
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than others. If we need to remain application-agnostic, it is good practice to report
multiple different metrics that highlight different types of errors. Nevertheless, no
evaluation metric can be a substitute for careful visual inspection and testing under a
wide range of real-world, application-dependent conditions.

Let J denote the number of body joints in the given skeleton format. We need
to compare an estimated 3D pose P̂ ∈ RJ×3 predicted by a model to a reference
pose P ∈ RJ×3 given in the dataset. We denote the individual joint positions as
p̂i, pi ∈ R3. Many metrics are computed root-relatively. This can be understood
either as subtracting the respective root joint position from both the prediction and
the reference pose, or as translating the prediction towards the reference to align the
root joints, before computing evaluation metrics. We take the first approach here,
and use superscript “rr” to denote root-relative coordinates, i.e., prr

i = pi − proot and
p̂rr
i = p̂i − p̂root. Let us further denote the Euclidean distance between prediction and

reference as di = ∥p̂i − pi∥ and drri = ∥p̂rr
i − prr

i ∥, since many metrics are based on this
distance.

Typically, metrics are averaged over all poses of the test set, hence we will define the
following metrics with regard to one instance.

3.4.1 MPJPE

The mean per joint position error (MPJPE) is the average root-relative Euclidean error:

MPJPE =
1

J

J∑
i=1

drri =
1

J

J∑
i=1

∥p̂rr
i − prr

i ∥. (3.15)

Typically, the root joint itself (whose root-relative error is zero by definition) is included
in the averaging. Advantages of the MPJPE include its straightforward interpretation
and that it has no parameters. However, its main drawback is its sensitivity to outliers.

3.4.2 P-MPJPE

The Procrustes-aligned mean per joint position error (P-MPJPE, PMPJPE or PA-MPJPE)
is similar to MPJPE, but it first aligns the prediction to the reference pose using the
least-squares optimal Helmert transformation, i.e., translation, rotation and uniform
scaling (Schönemann, 1966), with

s∗, R∗, t∗ = argmin
s∈R, R∈SO(3), t∈R3

J∑
i=1

∥(sRp̂i + t)− pi∥2, (3.16)
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after which the average Euclidean error is calculated as

P-MPJPE =
1

J

J∑
i=1

∥(s∗R∗p̂i + t∗)− pi∥. (3.17)

P-MPJPE is tolerant of various misalignments (e.g., the incorrectly “leaning” poses),
and also does not evaluate the quality of scale estimation.

3.4.3 PCK

The percentage of correct keypoints (PCK) measures the fraction of joints, for which
the root-relative Euclidean error is at most a certain threshold τ ≥ 0:

PCK(τ) =
1

J

J∑
i=1

[drri ≤ τ ] =
1

J

J∑
i=1

[∥p̂rr
i − prr

i ∥ ≤ τ ], (3.18)

using the Iverson bracket notation [x] that yields 1 if x is true and 0 otherwise. It is
denoted as PCK@150 mm, PCK150 or PCK(150) for τ = 150mm.

The main advantage is robustness to outlier errors. However, it requires the choice
of a specific threshold τ , and hence it can be more informative to plot PCK as a curve
over a range of thresholds. Furthermore, it does not reward more accurate predictions
than τ , which may be an advantage or a disadvantage in different settings. When the
reference poses are themselves not very precise, trying to match them beyond a certain
error is futile, therefore the evaluation metric need not be sensitive below τ error. This
is the original motivation for using the PCK in Mehta et al. (2017a). Earlier, Ionescu
et al. (2014) defined the opposite of this metric, called mean per joint localization
error (MPJLE), which counts the fraction of joints with higher error than the threshold.
However, over time, the PCK has seen more adoption in the literature.

3.4.4 AUC

The area under the curve (AUC) is the average PCK as the threshold ranges from 0 to τ .
It can be defined using the following definite integral:

AUC(τ) =
1

τ

∫ τ

0

PCK(t) dt. (3.19)

The AUC shares the outlier robustness property of PCK, while still rewarding error
reduction beyond τ . Typically, the integral in the AUC formula is evaluated through a
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discrete approximation, e.g., by averaging over K uniformly spaced thresholds from 0
to τ as

AUC(τ) ≈ 1

K

K−1∑
k=0

PCK

(
kτ

K − 1

)
, (3.20)

whose computation requires O(NK) operations. However, as we now show, there is
in fact a compact formula to compute the AUC in O(N) time, without approximation or
discretization of the threshold range, as

AUC(τ) =
1

J

J∑
i=1

[
1− drri

τ

]
+

, (3.21)

where [x]+ = max{0, x}.
Comparing AUC values reported in different papers is difficult if authors use

different (or unreported) discretization. We argue that computing the AUC exactly,
without discretization, is the best way to arrive at a consistently defined metric and it is
also faster to compute than the discretized version. We found no prior mention of this
derivation in the pose estimation literature, despite the wide use of the AUC metric.

Derivation. Substituting (3.18) into (3.19) and then switching the order of integration
and summation we get

AUC(τ) =
1

τ

∫ τ

0

1

J

J∑
i=1

[drri ≤ t] dt = (3.22)

=
1

J

J∑
i=1

1

τ

∫ τ

0

[drri ≤ t] dt = (3.23)

=
1

J

J∑
i=1

1

τ

(∫ min{drri ,τ}
0

0 dt+

∫ τ

min{drri ,τ}
1 dt

)
= (3.24)

=
1

J

J∑
i=1

1

τ
(0 + (τ −min{di, τ})) = (3.25)

=
1

J

J∑
i=1

(
1−min

{
drri
τ
, 1

})
= (3.26)

=
1

J

J∑
i=1

max

{
0, 1− drri

τ

}
=

1

J

J∑
i=1

[
1− drri

τ

]
+

. (3.27)

Experimental Check. Model details will be introduced later on in the thesis, however,
we find it apt to already present a quantitative evaluation of the impact of exact AUC
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Discretization (K) 8 16 32 64 128 ∞
AUC result 57.18 57.87 58.21 58.38 58.47 58.56
Discretization error 1.38 0.68 0.35 0.18 0.09 0

Table 3.1: Comparison of AUC@150 mm (%) values as computed with the approximate
(3.20) and exact (3.21) formulas, in the context of experiments we will discuss in detail
in Section 6.8 on page 95.

computation compared with various levels of discretization, in Table 3.1. Overall, a
difference on the order of 0.1% can be expected for different discretizations.

3.4.5 Absolute Metrics
MPJPE, PCK and AUC can also be computed without root joint alignment, to evaluate
absolute pose estimation quality. These are denoted as A-MPJPE, A-PCK and A-AUC,
respectively:

A-MPJPE =
1

J

J∑
i=1

di, (3.28)

A-PCK(τ) =
1

J

J∑
i=1

[di ≤ τ ], (3.29)

A-AUC(τ) =
1

J

J∑
i=1

[
1− di

τ

]
+

. (3.30)

3.4.6 A Unified View
Based on the above, the MPJPE, PCK and AUC metrics all have the form (1/J)

∑J
i=1 f(di),

that is, the individual Euclidean joint errors are transformed with some function f and
the results are averaged:

fMPJPE(d) = d, fPCK(d) = [d ≤ τ ], fAUC(d) = [1− d/τ ]+. (3.31)

Figure 3.2 shows a plot of these functions.

3.4.7 Dataset-Specific Protocols
Reproducible evaluation of a specific model is important, even if the training process
has a component of randomness. Therefore, throughout the thesis, we make the effort
to use the same protocol (including AUC discretization) as the official evaluation script
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Figure 3.2: The MPJPE, PCK and AUC metrics can be all understood as averaging some
function f of the jointwise errors, which we plot here.

if there is one available. There are various details that we will point out in the technical
chapters, such as which joints to evaluate, how to average the results (per sequence, or
per pose, etc.), what kind of alignment to the reference pose is used (root-alignment,
rigid-only Procrustes, rigid+scale Procrustes, bone vector rescaling, etc.).

Specifically for AUC, discretization can be emulated with minor adjustments to the
exact formula we derived above. For example, the official 3DPW evaluation script
computes PCK at 1 mm intervals from 0 to 200 mm (start inclusive, end exclusive),
then integrates using the scipy.integrate.quad function, which by default uses only
50 samples. On MPI-INF-3DHP, the official evaluation script computes PCK at 5 mm
intervals from 0 to 150 mm (inclusive, 31 samples) then averages these sampled values
for the AUC result.

These can be computed faster—with verified exact correspondence—as

f 3DPW
AUC (d) =

[
1−

⌊
d

200−1
· 50
⌋
+ 0.5

50

]
+

, f 3DHP
AUC (d) =

[
1−

⌊
d

150
· 30
⌋
+ 1

30 + 1

]
+

. (3.32)
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Figure 3.3: Datasets. Recent years have spurred the creation of many 3D human pose
estimation datasets, here we present a representative frame from a selection of these
datasets.

3.5 Datasets

Since around the late 2000s, datasets have played a key role in the improvements we
have witnessed in computer vision. This has been enabled by advances in recording
technologies (e.g., widely available digital cameras, better motion capture products),
as well as more advanced machine learning models that can “absorb” large amounts
of training data without saturating accuracy.

As research interest in human analysis has been on the rise, there are also numerous
new datasets released every year, such that it becomes a challenge to even list them
all. In the following we summarize some of the most important and largest ones. See
Figure 3.3 for a selection of representative frames from some datasets.
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3.5.1 Real 3D Datasets
Human3.6M (Ionescu et al., 2014) was for a long time the largest publicly available 3D
human pose estimation dataset and thus the main benchmark for comparing methods.
The initial baseline method was derived from Ionescu et al. (2011).

The dataset is captured with 4 cameras in a motion capture studio and provides
hardware-synchronized, calibrated RGB videos with 1000×1000 px resolution at 50 fps,
time-of-flight depth data, segmentation masks and person bounding boxes. Reference
poses are recorded with a ten-camera Vicon motion capture setup based on optical
marker tracking. Hence, the subjects wear tight-fitting but realistic clothes, as well as
visible markers. Raw marker positions are not available, instead Vicon’s proprietary
software performs tracking in an angle-based representation and the authors calculate
3D joint positions by applying forward kinematics on the Vicon skeleton. In the dataset,
a total of 11 subjects (one at a time) imitate 15 different activities such as asking for
directions, talking on the phone, walking a dog or sitting down. The inclusion of
such activities was a major improvement over previously available datasets such as
HumanEva. In some scenes a chair is present for sitting, otherwise the capture area
only includes the target person.

Two evaluation protocols are in wide use in the literature. In Protocol 1, the training
subjects are S1, S5, S6, S7, S8, while S9 and S11 are used for testing according to the
MPJPE metric. In Protocol 2, subjects S1, S5, S6, S7, S8, S9 are used in training and S11
in evaluation according to Procrustes-aligned MPJPE. Every 64th frame is evaluated.

According to the original protocol, the test subjects are S2, S3, S4 and S10. For these
subjects, the reference poses are not publicly available (additionally, RGB data for
S10 is withheld for privacy reasons). Evaluation according to this protocol can be
performed through submission to an evaluation server, but most publications follow
the aforementioned Protocols 1 or 2.

The main Human3.6M skeleton used for evaluation consists of 17 joints but the
dataset also provides some further joint positions.

MPI-INF-3DHP (Mehta et al., 2017a) is another important dataset, based on a commercial
markerless motion capture system (The Captury). The training set consists of 8 subjects
performing a diverse set of actions in a green-screen studio. Synchronized RGB videos
are provided from 14 camera views with resolution 2048×2048 px and 25 fps, of which
five are positioned similarly to Human3.6M (i.e., at a chest height) and are often the
only ones used for training. Chroma key sequences are available based on the green
screen, enabling masking out and replacing the background as augmentation. Since
the mocap system is markerless, the subjects have no visible markers on them unlike
in Human3.6M, and they wear more general and looser-fitting clothes.

Test frames come from 3 different types of scenes: the same green-screen studio
as in training, the studio with the green-screen drapes removed, as well as outdoor
sequences. Each of these setups has two sequences with one subject each.
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Especially the outdoor sequences make this benchmark more challenging than
Human3.6M. The dataset provides two ground truth variants: unnormalized metric-
space poses and “universal” (height-normalized) ones. Since its publication, the official
ground truth has been updated twice, making not all published results comparable. In
our experience, the first update changes scores by 1–3%, while the second one only
by 0.1%, which is within experimental fluctuation, making the two latest versions
comparable.

The full skeleton contains 28 joints, with 17 of them being similar to the Human3.6M
joints, though not exactly equally positioned.

HumanEva (Sigal et al., 2010) was the pioneer of 3D pose datasets, as we understand
them today. It contains 40k poses captured using markers, along with synchronized
multi-view video. While large for its time, today’s datasets are orders of magnitude
larger and contain more challenging poses and appearances, and hence HumanEva is
mostly of historical relevance today.

CMU-Panoptic (Joo et al., 2019) is a large-scale multi-person 3D pose dataset recorded
in a specially constructed sphere-shaped studio. Calibrated RGB data is available from
31 high-definition cameras (1920×1080 px, 29.97 fps), 480 VGA cameras (640×480 px,
25 fps) and 10 Kinect v2 sensors (RGB and depth). There are 66 sequences available,
showing dozens of people interacting in various ways, playing social games like Mafia,
haggling with each other, playing musical instruments, etc. The reference poses
were derived from candidate joints obtained from 2D predictions of a convolutional
pose machine (Wei et al., 2016) from every camera, and a complicated association,
triangulation, filtering and tracking procedure on these candidates.

3DPW (von Marcard et al., 2018) is the first large-scale, in-the-wild 3D human pose
estimation dataset, i.e., recorded from free-hand moving cameras in everyday urban,
indoor and nature environments instead of studios. In-the-wild 3D pose capture
is difficult due to frequent occlusions and the difficulties in camera calibration and
synchronization. Von Marcard et al. avoid this issue by using inertial measurement
units (IMU) attached to the subjects for recovering the poses. The dataset contains
multi-person sequences, with SMPL annotations given for one or two of the depicted
people. The original train/validation/test split has been superseded and the dataset is
now mostly used only for evaluation purposes.

MuCo-3DHP (Mehta et al., 2018) is a synthetically composited multi-person dataset,
based on MPI-INF-3DHP. The authors sample four random frames from 3DHP and
use the green screen–based segmentation masks to paste the four people’s foreground
segment onto one image, according to their depth order. MuPoTS-3D was also
proposed in Mehta et al. (2018), and is a mixed indoor and outdoor multi-person
test set, compatible with MuCo-3DHP, consisting of 20 sequences showing people
performing various actions and interactions.
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AIST-Dance++ (Li et al., 2021e) is a large-scale studio dataset of various dances, based
on AIST-Dance (Tsuchida et al., 2019), captured from 10 cameras arranged in a circle.
The background is uniform white and the poses are often very challenging. The
reference poses were obtained in a markerless way, via triangulation of 2D estimates
and are therefore somewhat noisy.

HUMBI (Yu et al., 2020b) is another large-scale markerless dataset, showing subjects per-
form various fairly simple dance moves and game-playing actions. The distinguishing
feature of HUMBI is the large number of subjects (772) with various appearances.

HuMMan (Cai et al., 2022) is one of the most recent human sensing datasets, and
includes recordings of 1000 subjects, 400k sequences and 60M frames with point
clouds, meshes, textures, SMPL body parameters and keypoint annotations. Besides
10 RGB-D cameras, the dataset also provides recordings from smartphone cameras.

Some Further Labeled Datasets. Berkeley-MHAD (Ofli et al., 2013), UMPM (van der
Aa et al., 2011), TotalCapture (Trumble et al., 2017), BML-MoVi (Ghorbani et al., 2021),
Human4D (Chatzitofis et al., 2020) and MADS (Zhang et al., 2017) are further marker-
based 3D human pose datasets with RGB videos. GPA (Wang et al., 2019b) and
3DOH50K (Zhang et al., 2020b) are datasets specifically focused on occlusions. IKEA
ASM (Ben-Shabat et al., 2021) shows people assembing furniture and provides marker-
less, triangulated reference poses. Fit3D (Fieraru et al., 2021a), HumanSC3D (Fieraru
et al., 2021b) and CHI3D (Fieraru et al., 2020) are three datasets recorded in the same
studio as Human3.6M, focusing on fitness actions, self-contact and close interactions,
respectively. BEHAVE (Bhatnagar et al., 2022) focuses on human–object interactions
and RICH (Huang et al., 2022) on human–scene contact. ASPset (Nibali et al., 2021) is
a large, sports-focused dataset recorded on a football pitch, and is released under a
public-domain license. 3D-Yoga (Li et al., 2022a) contains 117 categories of yoga poses
by 22 subjects and has multi-view RGB and 3D skeleton annotations. CHICO is focused
on human–robot collaborative scenarios and pose forecasting.

Pseudo-Labeled Datasets. Since recording 3D-labeled datasets is difficult in the wild,
pseduo-labeling 2D datasets with 3D labels can be a fruitful approach. UP-3D (Lassner
et al., 2017) and EFT (Joo et al., 2021) are examples of such datasets.

Multi-View Non-Pose Human Datasets. As single-image (2D) pose estimation is
becoming stronger, further multi-view datasets of people may also be triangulated
with small effort, especially with the rise of learnable triangulation methods (Iskakov
et al., 2019). Multi-view datasets without (high-quality) pose labels include NTU-
RGB+D (Liu et al., 2019b), PKU-MMD (Liu et al., 2017), MPI08 (Baak et al., 2010;
Pons-Moll et al., 2010), NW-UCLA (Wang et al., 2014b), PHPS (Zou et al., 2020b),
CWIPC-SXR (Reimat et al., 2021) as well as Alexiadis et al. (2017).
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3.5.2 Synthetic 3D Datasets
Real 3D pose datasets are difficult to record, since they need complex, synchronized,
multi-camera setups that are challenging to use outdoors and “in the wild.” Inertial
measurement units and other sensors can help with this to an extent, but challenges
remain for larger scale collection.

In contrast, synthetic data generation through computer graphics techniques is a
useful way to obtain virtually unlimited, diverse data, with rare appearances, and
environments that would be difficult to capture in reality. Another benefit of synthetic
data is the possibility of building large-scale datasets without privacy issues. Synthetic
data has a long history in pose estimation, going back all the way to O’Rourke and
Badler (1980), but of course graphics quality has increased immensely over time.

SURREAL (Varol et al., 2017) is a synthetic dataset consisting of millions of frames of
SMPL (Loper et al., 2015) body meshes rendered in the Blender software, according to
pose sequences from the CMU MoCap database (CMU, 2003), overlaid on random
background images. The dataset provides ground-truth pose, mesh parameters, body
part segmentations and depth maps. While the rendering quality is not photorealistic
(“sim-to-real gap”), the dataset depicts many extreme poses such as cartwheels, many
different textures, etc., making it valuable as an addition to the training process.

GTA5. Several datasets have been produced using the Grand Theft Auto V (GTA5)
video game published by Rockstar Games. GTA5 is one of highest-budget video games
ever produced (McGinty, 2013), and correspondingly has a vast array of animations,
characters, object models, indoor and outdoor environments, weather conditions, etc.
that can be combined in endless ways to yield varied datasets for computer vision. The
JTA dataset (Fabbri et al., 2018) focuses on large-scale crowds of walking pedestrians.
SAIL-VOS (Hu et al., 2019) is primarily an amodal video object segmentation dataset,
but also includes 3D human pose labels, from many cinematic cutscenes of the game,
thereby showing more complicated poses. GTA-IM (Cao et al., 2020) is focused on
3D human pose forecasting and everyday motions such as walking or sitting down.
GTA-Human (Cai et al., 2021) contains a large number of short sequences or randomly
sampled actions, weather, characters, etc., with SMPL-based annotations.

3DPeople (Pumarola et al., 2019) is another large-scale synthetic dataset, with 80
characters in more realistic clothing than in the case of SURREAL. The dataset
provides ground-truth meshes, poses, depth, normals, body part segmentation and
cloth segmentation.

AGORA (Patel et al., 2021) is a much more realistic-looking synthetic dataset in terms
of graphics quality, environmental conditions and clothing. The characters stem from
the high-fidelity RenderPeople model repository. SPEC (Kocabas et al., 2021b) follows
a similar pipeline for data generation, focusing on camera setups with more extreme
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perspective distortions. 3D pose and mesh annotations are available according to the
SMPL (Loper et al., 2015) and SMPL-X (Pavlakos et al., 2019) body models.

HSPACE (Bazavan et al., 2021) is similar to AGORA in terms of realism. It is somewhat
larger and uses the Google’s GHUM body model (Xu et al., 2020a) instead of SMPL.

PeopleSansPeople (Ebadi et al., 2021) and PSP-HDRI+ (Ebadi et al., 2022) are synthetic
human datasets generated with the Unity rendering engine. In contrast to HSPACE and
AGORA, the backgrounds are random images, and not realistic scenes corresponding
with the humans.

3.5.3 2D Datasets
LSP (Leeds Sports Poses; Johnson & Everingham, 2010) is an early full-body 2D human
pose dataset, with images collected from Flickr, depicting athletes in complex sports
and acrobatic poses. Originally consisting of 1000 training and 1000 test images,
LSP was later extended with 10k further images with noisier annotations (Johnson &
Everingham, 2011).

Other early 2D pose datasets, such as Buffy (Ferrari et al., 2009) and FLIC (Frames
Labeled In Cinema; Sapp & Taskar, 2013), were based on TV shows and movies, and
only labeled upper bodies.

MPII (Andriluka et al., 2014) is a dataset with 25k training images collected from
YouTube, annotated with 16 keypoints (of which typically 14 are evaluated).

MS-COCO (Common Objects in Context; Lin et al., 2014) is a large-scale dataset for object
detection, segmentation, captioning and 2D human pose estimation. With 250k person
instances with keypoints, it is one of the largest available pose datasets.

PoseTrack (Andriluka et al., 2018) is a large 2D human pose dataset, containing videos
annotated with poses, associated with consistent IDs over time.

JackRabbot, or JRDB (Martín-Martín et al., 2021) is a dataset of 54 sequences collected
from a mobile robot platform moving around the Stanford University campus, recording
with multiple RGB cameras and LiDAR. Originally the dataset was annotated box-level
3D object tracking, and was later extended with activity labels, and more recently with
2D pose annotations for 600k person instances (Vendrow et al., 2022).
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4
Occlusion Robustness in

3D Human Pose Estimation

Occlusion is commonplace in realistic human–robot shared environments, yet its effects
are not considered in standard 3D human pose estimation benchmarks. This leaves
the question open: how robust are state-of-the-art 3D pose estimation methods against
partial occlusions?

In this chapter, we study the effect of superimposing several types of synthetic
occlusions on the Human3.6M dataset and find that a state-of-the-art method of the
time, as measured on the Human3.6M benchmark, can still be sensitive even to low
amounts of occlusion. Addressing this issue is key to progress in applications such as
collaborative and service robotics. We take a first step in this direction by improving
occlusion robustness through training data augmentation with synthetic occlusions.
This also turns out to be an effective regularizer that is beneficial even for non-occluded
test cases.

This chapter is based on our paper Sárándi et al. (2018a), presented at the 2018
IEEE/RSJ International Conference on Intelligent Robots and Systems – Workshop on
Robotic Co-Workers 4.0.

4.1 Overview
To collaborate with humans and to understand their actions, collaborative and service
robots need the ability to reason about human pose in 3D space. An important
challenge in realistic environments is that humans are often only seen partially, e.g.,
standing behind machine parts or carrying objects in front of the body (see Figure 4.1).
Robust robotics solutions need to handle such disturbances gracefully and make use
of the visual cues still present in the scene to reason around the occlusion.

Although recent years have brought significant advances in 3D human pose
estimation, as measured on standard computer vision benchmarks such as Hu-

51



4 Occlusion Robustness in 3D Human Pose Estimation

Figure 4.1: Example of partial occlusions in the context of shared human–robot
workspaces. Note how easily we humans can guess the rough pose of the person
behind the occlusion. Can current 3D human pose estimation methods do that as well?

man3.6M (Ionescu et al., 2014), the behavior of models under occlusion remains
largely unexplored, as the benchmarks do not systematically model occlusion effects.

To our knowledge, we present the first systematic study of various types of test-time
(synthetic) occlusions in 3D human pose estimation from a single RGB image. As we will
see, ignoring the aspect of occlusions may cause model accuracy to rapidly deteriorate,
even under mild occlusion levels, despite the good benchmark performance. Such
sudden and unexpected failures in the robot’s perception would prevent smooth and
comfortable human–robot interaction and may lead to safety hazards. Furthermore, we
demonstrate that simple occlusion data augmentation during training increases model
robustness. This augmentation also improves performance even for non-occluded test
images. Our approach is efficient and suitable for high-frame-rate applications.

4.2 Related Work

4.2.1 3D Human Pose Estimation

3D human pose estimation has seen rapid progress in recent years. For a thorough
overview of prior work, see Chapter 2. Current state-of-the-art methods use deep
neural networks, either directly on the input image or on the output of a 2D pose
estimator. Based on the sweeping success of heatmap-based representations in 2D
human pose estimation (e.g., Newell et al., 2016), heatmaps have recently been also
adopted in 3D methods, including volumetric (Pavlakos et al., 2017; Sun et al., 2018a)
and marginal heatmaps (Nibali et al., 2019).
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4.2.2 Occlusions, Erasing and Copy-Pasting
In a pre-deep learning study based on silhouettes and HOG features, Huang and
Yang (2009) tackled occlusions in 3D pose estimation from RGB, but their analysis
was limited to walking actions and occlusions with two rectangles. Occlusion effects
have also been studied in 3D pose estimation from depth input (Rafi et al., 2015),
where exploiting semantic information from the occluder itself was found to improve
predictions.

Data augmentation by erasing a rectangular block from the input has recently been
concurrently investigated under the names random erasing (Zhong et al., 2020) and
cutout (DeVries & Taylor, 2017), for image classification, object detection, and person
re-identification. Similarly, synthetically placing objects into a scene by image-level
copy-pasting has been shown to help object detection (Dwibedi et al., 2017; Georgakis
et al., 2017; Dvornik et al., 2018). However, those methods are trained to detect these
pasted objects, while in our case the task is to infer what lies behind them. Ke et al.
(2018) augment training images for 2D human pose estimation by copying background
patches over some of the body joints. Research on facial landmark localization has
investigated and modeled occlusions for a long time (Burgos-Artizzu et al., 2013;
Ghiasi & Fowlkes, 2014), including augmenting training images with randomly pasted
occluding objects (Yuen & Trivedi, 2017).

4.3 Method
In this chapter, we study the effect of occlusion on the accuracy of 3D human pose
estimation. To this end, we have devised a 3D pose estimation approach that reaches
state-of-the-art benchmark performance, leading us to expect that the observations
drawn from our experiments also transfer to other models.

4.3.1 Architecture
We use a fully convolutional net to predict volumetric body joint heatmaps from the
input RGB image, based on a ResNet-50 (He et al., 2016a) backbone architecture. After
discarding the global average pooling layer, we adjust the number of output channels of
the ResNet to be the product of the number of joints and the number of heatmap-voxels
along the depth axis. Reshaping the resulting tensor yields the volumetric heatmaps.
Nominal stride and depth discretization are configured to yield heatmaps of size
16×16×16 for an image of size 256×256 px. Given the volumetric heatmap, coordinate
predictions are obtained using soft-argmax (Levine et al., 2016; Nibali et al., 2018; Sun
et al., 2018a). As in Pavlakos et al. (2017), the x and y coordinates are interpreted as
image space coordinates, while z is the depth of the particular joint relative to the root
(pelvis) joint depth, with the 16 voxels covering 2 meters. In order to concentrate on the
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Figure 4.2: Examples of the investigated geometric occlusions: circles, a single rectan-
gle (Zhong et al., 2020), rectangles, oriented bars. See Figure 4.3 for an example with
Pascal VOC objects.

aspect of articulated pose, as opposed to person localization, we assume that the true
root joint depth is given by an oracle at test time. The coordinates are back-projected
to camera space using the known camera intrinsics. Finally, the ℓ1 loss is computed
on the predicted and ground-truth 3D coordinates in camera space. Since all of the
preceding operations are differentiable, the network can be trained end-to-end.

4.4 Experimental Setup

4.4.1 Dataset

Human3.6M (Ionescu et al., 2014) is the largest public 3D pose estimation dataset.
It contains 11 subjects imitating 15 actions in a controlled indoor environment while
being recorded with 4 cameras and a motion capture system. Following the most
common experimental protocol in the literature, we use five subjects (S1, S5, S6, S7, S8)
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Input image Baseline result
Result when trained

with VOC occlusion aug.

Figure 4.3: Prediction change in the presence of synthetic test-time occlusion. Ground
truth is shown with grey dashed lines, predictions with colorful ones. The baseline
model fails to predict the pose of the occluded limbs, while the model trained with
occlusion augmentation behaves more robustly.

for training and two (S9, S11) for testing. We train action-agnostic models, as opposed
to action-specific ones.

4.4.2 Data Sampling
To reduce the redundancy in training poses, we adaptively subsample the frames
similarly to Mehta et al. (2017b), only keeping a frame when at least one body joint
moves by at least 30 mm compared to the last kept frame. For the test set we follow
prior work and use every 64th frame.

4.4.3 Image Preprocessing
Before feeding an image to the network, we center and zoom it on the person, at a resolu-
tion of 256×256 px. To ensure correct perspective (with the principal point at the image
center), we reproject the image onto a virtual camera pointed at the center of the per-
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son’s bounding box, as provided in the dataset. Scaling is applied so that the larger side
of the person’s bounding box covers about 80% of the image side length. Common data
augmentation techniques are used in training, including random rotation, scaling, trans-
lation, horizontal flipping, as well as image filtering such as color distortions and blurs.

4.4.4 Evaluation Metrics
Following standard practice on Human3.6M, we evaluate prediction accuracy by the
so-called mean per joint position error (MPJPE), which is the mean Euclidean error of all
joints after skeleton alignment at the root (pelvis) joint. Procrustes alignment is not used.

4.4.5 Synthetic Occlusions for Robustness Analysis
We consider solid black shapes and some more realistic object segments from the Pascal
VOC 2012 dataset (Everingham et al., 2012) as occluders in this study (see Figures 4.2
and 4.3 on page 54 and on the previous page). The number, position and size of the
objects are generated at random. We define the degree of occlusion as the percentage of
occluded pixels inside the person’s bounding box and vary this quantity between 0%
and 70%.

4.4.6 Occlusion-Augmented Training
We hypothesize that synthetic occlusion data augmentation during training can
improve test-time occlusion robustness. To verify this, we use the same kinds of
occlusions as described in the previous section, with an additional mixture variant,
which uses one of the other types at random for each frame. We make sure to strictly
separate the VOC objects used for training and testing. Furthermore, we try the RE-0
variant of random erasing by Zhong et al. (2020), generating a single occluding black
rectangle of random size according to their pseudocode. We refer to this mode as single
rectangle in this chapter.

To make these strategies comparable, we parameterize them such that the distribution
of the number of occluded pixels is similar. Notably, we only apply these augmentations
with 50% probability for each frame. This was found important in prior work on
occlusion augmentation (DeVries & Taylor, 2017).

4.4.7 Implementation Details
We use the implementation of ResNet-50V1 and the corresponding ImageNet-pretrained
initial weights from the TensorFlow-Slim library (Silberman & Guadarrama, 2016).
Training is done with the Adam optimizer and a minibatch size of 64, for 40 epochs,
taking approximately 24 hours on an Nvidia GeForce Titan X (Pascal) GPU.
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Figure 4.4: Assessing occlusion robustness on Human3.6M. Each subplot shows the
performance when training with a particular augmentation method. Within a subplot,
each line shows the mean and standard deviation of MPJPE under increasing degrees
of occlusion of a particular type.

4.5 Results

We start presenting our results by showing that our baseline model has state-of-the-art
performance. We then show how performance deteriorates with test-time occlusions
and that this can be mitigated using occlusion data augmentation. The augmentations
are then shown to help even when the test images do not contain synthetic occlusions.

4.5.1 Baseline Performance

The current state of the art among published methods which use no extra 2D pose
datasets for training is by Pavlakos et al. (2017), as shown in Table 4.1. Since our
evaluation assumes knowledge of the root joint depth at test time, we compare with
Pavlakos et al.’s performance under the same conditions, for which the results can be
found in their supplementary material. Our baseline’s MPJPE of 63.3 mm is already
better than Pavlakos et al.’s 64.8.
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Zhou et al. (2015) 87.4 109.3 87.1 103.2 116.2 139.5 106.9 99.8 124.5 199.2 107.4 118.1 79.4 114.2 97.7 113.0
Tekin et al. (2016) 102.4 147.7 88.8 125.4 118.0 182.7 112.4 129.2 138.9 224.9 118.4 138.8 55.1 126.3 65.8 125.0
Zhou et al. (2016) 91.8 102.4 97.0 98.8 113.4 125.2 90.0 93.8 132.2 159.0 106.9 94.4 79.0 126.0 99.0 107.3
Sun et al. (2017) 90.2 95.5 82.3 85.0 87.1 94.5 87.9 93.4 100.3 135.4 91.4 87.3 78.0 90.4 86.5 92.4
Sun et al. (2018a) 63.8 64.0 56.9 64.8 62.1 70.4 59.8 60.1 71.6 91.7 60.9 65.1 51.3 63.2 55.4 64.1
Pavlakos et al. (2017) 67.4 72.0 66.7 69.1 72.0 77.0 65.0 68.3 83.7 96.5 71.7 65.8 59.1 74.9 63.2 71.9

Pavlakos et al. (2017)∗ 59.3 64.9 59.4 61.3 65.1 69.0 57.1 60.1 75.1 91.9 64.5 59.6 66.8 53.7 56.8 64.8
Ours (no occlusion aug.) 60.2 64.1 55.9 58.3 63.8 69.5 58.8 64.4 67.7 90.8 61.9 59.2 66.0 56.9 50.8 63.3

w/ circles aug. 52.9 58.0 51.8 54.8 56.9 62.6 51.4 55.0 64.7 79.2 56.3 52.5 58.8 47.9 43.0 56.8
w/ single rectangle

aug. 52.0 58.6 51.0 53.5 56.1 62.6 51.5 54.2 65.7 71.2 56.1 52.9 58.2 47.8 42.9 56.1

w/ rectangles aug. 51.9 57.9 52.5 54.2 57.3 61.9 51.7 55.2 63.4 76.7 56.5 51.7 58.8 47.8 43.4 56.5
w/ bars aug. 55.0 60.1 54.1 56.4 59.9 64.9 52.4 59.5 67.7 88.7 58.5 54.2 62.4 50.0 45.4 59.6
w/ VOC objects aug. 51.2 58.7 51.7 53.4 56.8 59.3 50.7 52.6 65.5 73.2 56.8 51.4 56.6 47.0 42.4 55.8
w/ mixture aug. 51.3 57.8 52.5 53.8 55.9 58.7 50.9 52.8 66.7 77.1 56.6 51.7 56.6 47.6 42.8 56.1

Table 4.1: Mean per joint position error on Human3.6M for methods using no extra pose datasets in training. Methods
below the line have access to the ground-truth root joint depth at test time. (No synthetic occlusions are used on the
test inputs.) (∗results with known root depth.)
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4.5 Results

The method by Sun et al. (2018a) achieves an MPJPE of 64.1 mm, but it is unclear
whether this approach uses the known root joint depth or resolves scale ambiguity by
other means.

4.5.2 Robustness Analysis Under Occlusion
We evaluate the robustness of our baseline model using different degrees and types
of occlusions (see the top left plot of Figure 4.4 on page 57). We observe that circular
occlusions cause by far the largest increase in error, the reason for which needs further
investigation. Occlusions with oriented bars, VOC objects and rectangles lead to
comparable performance loss. We note that rectangles are the least problematic type
of occlusion, despite being a widely used test case in the literature.

Figure 4.3 on page 55 visualizes an example. The baseline network gives good
predictions for the non-occluded case, but when we paste two Pascal VOC objects onto
the image, prediction visibly fails for the affected limbs.

4.5.3 Augmentation Improves Occlusion Robustness
We now turn to the evaluation of occlusion augmentation at training time for increased
test-time occlusion robustness. Figures 4.4 and 4.5 on page 57 and on the following
page show the results. Erasing a single rectangle (as in Zhong et al., 2020) results
in robustness against multiple rectangles at test time, but is much less effective for
the other types of occlusions, being most sensitive to circles. Using several rectangles
during training works slightly better than single-rectangle random erasing, but it,
too, has difficulty in generalizing to other types of occlusion structures. Circular
occlusion augmentation generalizes to all other simple geometric occlusion shapes, but
barely helps when more realistic VOC objects are used as occluders at test time. VOC
augmentation, however, does generalize to both simple geometric shapes and other VOC
objects (the objects used in training and testing are strictly separated). The qualitative
difference in robustness when using this augmentation type is illustrated in Figure 4.3
on page 55. The network learned to use context cues and gives good prediction even for
the almost fully occluded lower left leg. Finally, the combination of all these strategies
proves to be effective against all of the analyzed occlusion types together.

4.5.4 Regularization via Occlusion Augmentation
In the previous section, we have seen that training-time occlusion augmentation is
helpful when evaluating on occluded test examples. Let us now look at the effect
of these augmentation schemes when evaluating on the original test data without
synthetic occlusions (see Table 4.1). All occlusion augmentation strategies are found
to improve upon the baseline result, with the VOC objects performing the best and
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203.7 169.3 183.0 182.9 205.5 68.6 70.1

Figure 4.5: Exploring how much each type of training-time data augmentation protects
against each type of test occlusions. The numbers are the MPJPE averaged for degrees
of occlusion between 10% and 50%.

bars the worst. Although this was not our original aim in conducting this study, it is a
valuable finding, which we are going to exploit in Chapter 5.

4.5.5 Runtime
Inference of the whole pipeline runs at 64, 165, and 204 fps for batch sizes of 1, 8, and
64 images, respectively, on a single Nvidia GeForce Titan X (Pascal) GPU. This makes
the method suitable for high-frame-rate applications.

4.6 Conclusion
We have presented a systematic study of occlusion effects on 3D human pose estimation
from a single RGB image, using an efficient ResNet-based test model.

We found that despite producing state-of-the-art benchmark results, the network’s
performance quickly drops when synthetic occlusions are added. Circular structures
turned out to be particularly problematic, the reason of which needs further study. We
then showed that training-time occlusion data augmentation is effective in reducing
occlusion-induced errors, while also improving the performance without test-time
occlusions.

Future experiments should also target other datasets besides Human3.6M and it
remains to be seen how well our findings about synthetic occlusions generalize to real
ones.
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5
Synthetic Occlusion Augmentation:

A Case Study

In Chapter 4, we have seen how occlusion data augmentation can lead both to a
substantial improvement of occlusion robustness in 3D human pose estimation, and
provide a regularizing effect, reducing test error even on non-occluded images.

In this chapter, we describe a case study of adapting and applying our method to the
2018 PoseTrack Challenge on 3D human pose estimation at the European Conference
on Computer Vision (ECCV), where our submission achieved first place.

Since this challenge uses held-out test data, it allows for a more unbiased evaluation
of competing methods than the typical Human3.6M evaluation protocol, where gradual
overfitting over the years could be a concern. In addition to reaching first place in the
challenge, our method also surpasses the state of the art on the usual Human3.6M
benchmark, when measured against other methods that use no additional pose datasets
in training. We have released the code for applying synthetic occlusions publicly.1

This chapter is based on our paper Sárándi et al. (2018b), which is, in turn, a
longer version of our extended abstract presented at the 2018 European Conference on
Computer Vision – PoseTrack Workshop.

5.1 Task and Dataset

The 3D human pose estimation part of the 2018 ECCV PoseTrack Challenge invited
participants to tackle the following task. Given an uncropped, static RGB image
containing a single person, estimate the position of 17 body joints in 3D camera space,
relative to the root (pelvis) joint position.

1https://github.com/isarandi/synthetic-occlusion
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5 Synthetic Occlusion Augmentation: A Case Study

Figure 5.1: Examples of synthetic occlusions with Pascal VOC objects (geometric and
color augmentations not depicted).
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Figure 5.2: Overview of our architecture.

The dataset in this challenge is a subset of Human3.6M (Ionescu et al., 2014),
with 35 832 training, 19 312 validation and 24 416 test examples. There are a few
key differences in the challenge protocol compared to the full benchmark. First, the
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5.2 Method

challenge version does not provide person bounding boxes and camera intrinsics.
Second, the ground-truth labels are more restricted for the training set, consisting only
of root-relative 3D joint coordinates. Notably, image-space 2D joint coordinates are not
available either.

5.2 Method
We present a modified version of our method described in Chapter 4, which we used
for studying occlusion robustness in 3D pose estimation. We extend the method to
handle the above-mentioned differences in the experimental protocol.

5.2.1 Image Preprocessing
Since bounding boxes are not given, we obtain them using the YOLOv3 detector (Red-
mon & Farhadi, 2018). The camera’s intrinsic parameters are not specified in the data,
however the images all originate from the Human3.6M dataset. This motivates us
to treat the focal length f as a global hyperparameter. Using this focal length, we
reproject the image to be centered on the person box through a homography, at a scale
where the larger side of the box fills 90% of the resulting image.

5.2.2 Backbone Network
We feed the transformed image (with resolution 256×256 px) into a fully convolutional
backbone network (ResNet-50V2; He et al., 2016b). We directly obtain volumetric
heatmaps from the backbone net by adding a 1×1 convolutional layer on the last spatial
feature map of the backbone, producing J ·D output channels. The resulting tensor is
reshaped to yield J volumes, one per body joint, each with depth D.

5.2.3 Volumetric Heatmaps
Following Pavlakos et al. (2017), we use 2.5D volumetric heatmaps: the X and Y
axes correspond to image space and the depth axis to camera space, relative to the
person center. Root-relative depth predictions, however, are not sufficient. In order to
back-project the image-space coordinates to camera space, we would need to know
the absolute depths. Pavlakos et al. optimize the root joint depth in postprocessing,
based on a fixed bone-length assumption. By contrast, we predict this distance using a
second prediction head attached to the backbone network (see Figure 5.2). This head
outputs a 1D heatmap, discretized to 32 units, representing a 10 meter range in front of
the camera. We will discuss a more general approach to tackle absolute 3D human
pose estimation in Chapter 7.
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5 Synthetic Occlusion Augmentation: A Case Study

5.2.4 Soft-Argmax
We extract coordinate predictions from both heatmaps using soft-argmax (Levine et al.,
2016; Nibali et al., 2018). Since this operation is differentiable, there is no need to
provide ground-truth heatmaps at training time (Sun et al., 2018a). Instead, the loss
can be computed deeper in the network and backpropagated through the soft-argmax
operation. Soft-argmax also reduces the quantization errors inherent in hard argmax
and gives fine-grained, continuous results without requiring memory-expensive, high-
resolution heatmaps (Sun et al., 2018a). Indeed, we use a heatmap resolution as low as
16×16×16 for the results presented in this chapter, and will further reduce this to 8×8×8
in the later ones.

5.2.5 Camera Intrinsics
Having predicted image coordinates xi, yi, depth coordinates ∆Zi relative to the person
center and the absolute depth Z∗ of the person center by soft-argmax, we now need
camera intrinsics to transform the coordinates from image space to 3D camera space.
As mentioned earlier, the original camera’s focal length f is treated as a hyperparameter,
and we must also take into account the zooming factor s applied in preprocessing.

To avoid the need for precise hyperparameter tuning of f , we learn an additional,
input-independent corrective factor c for the focal length during training, to achieve
better alignment of image and heatmap locations. Denoting the image height and
width as H and W , back-projection is performed asXi

Yi

Zi

 = (Z∗ +∆Zi)

fsc 0 W/2
0 fsc H/2
0 0 1

−1 xi

yi
1

 . (5.1)

5.2.6 Loss
After subtracting the root joint coordinates, we compute the ℓ1 loss in the original
camera space w.r.t. the provided root-relative ground truth. No explicit heatmap loss
is used. Since all above operations are differentiable the whole network can be trained
end-to-end.

5.2.7 Data Augmentation
In Chapter 4, we found that augmenting training images with synthetic occlusions
acts as an effective regularizer. Starting with the objects in the Pascal VOC dataset (Ev-
eringham et al., 2012), we filter out persons, segments labeled as difficult or truncated
and segments with area below 500 px, leaving 2638 objects. With probability pocc, we
paste a random number (between 1 and 8) of these objects at random locations in each
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5.3 Results

Dir. Dis. Eat Greet Phn. Pose Pur. Sit SitD Sm. Pht. Wait Walk WD WT Avg

Zhu 58 59 64 62 65 60 68 77 92 65 68 62 60 70 59 66
Rhodin 51 53 58 52 64 53 67 94 132 65 64 57 53 67 53 66
Zhou 52 56 55 51 57 53 64 73 81 61 60 57 49 61 53 59
Park 53 52 52 53 55 55 54 71 84 56 60 58 51 64 57 58
Shen 53 54 54 52 56 55 58 70 78 60 59 57 48 61 56 58
Pavlakos 44 46 50 47 56 47 52 63 70 54 54 48 46 58 46 52
Sun 38 43 46 41 46 40 49 65 73 48 49 43 38 52 38 47

Ours 38 40 43 40 43 40 47 58 64 43 48 42 36 50 38 45

Table 5.1: Mean per joint position errors achieved by participants of the 2018 ECCV
PoseTrack Challenge on 3D human pose estimation (Ionescu et al., 2018), on a subset
of the Human3.6M dataset. In contrast to our method, some participants used extra
2D pose datasets in training (in accordance with the challenge rules).

frame. We also apply standard geometric augmentations (scaling, rotation, translation,
horizontal flip) and appearance distortions (blurs and color manipulations). At test
time only horizontal flipping augmentation is used.

5.2.8 Training Details

The backbone network is initialized with ImageNet-pretrained weights from Silberman
and Guadarrama (2016). We train the final method for 410 epochs on the union of
the training and validation set using the Adam optimizer (Kingma & Ba, 2015) and
cyclical (triangular) learning rates (Smith, 2017). Our final challenge predictions were
produced using a snapshot ensemble (Huang et al., 2017), averaging the predictions
of snapshots taken at the last three learning rate minima of the cyclical schedule. We
used f = 1500 and pocc = 0.5 for the submission.

5.3 Results

The evaluation metric is the mean per joint position error (MPJPE) over all joints after
subtraction of the root joint position. Our method achieves best results for all actions,
even ahead of methods using extra 2D pose datasets in training (see Table 5.1). The
margin is largest for the actions Sitting and Sitting Down, showing that our method
is more robust to the presence of a chair, which is the only occluding object in the
Human3.6M dataset.
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Figure 5.3: Effect of the per-frame probability of occlusion augmentation (pocc) evaluated
on the Challenge validation set.

5.3.1 Effect of Occlusion Augmentation

Figure 5.3 shows how synthetic occlusion augmentation improves results on the Chal-
lenge validation set as we vary the probability pocc of applying occlusion augmentation
to each frame. Augmenting just 10% of the images already improves MPJPE by 8.2 mm
and improvements continue to about pocc = 70%, after which performance is only
influenced slightly.

5.3.2 Full Human3.6M Benchmark

For comparison with prior work, we train and evaluate our method on the full
Human3.6M benchmark as well. Here we use the bounding boxes and camera
intrinsics provided with the dataset and minimize the ℓ1 loss computed on the absolute
(i.e., non-root-relative) coordinates in camera space for 40 epochs. The person center
depth Z∗ is estimated as described in Section 5.2 on page 63. We follow the common
protocol of training on five subjects (S1, S5, S6 S7, S8) and evaluating on two (S9,
S11), without Procrustes alignment. We use no snapshot ensembling here, for better
comparability. The occlusion probability pocc is set to 1. As seen in Table 5.2, our
method outperforms all prior work on Human3.6M in the setting where no additional
pose datasets are used for training.
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5.3
Results

Dir. Dis. Eat Greet Phon. Pose Pur. Sit SitD Smo. Phot. Wait Walk WalkD WalkT Avg

* Zhou et al. (2017) 54.8 60.7 58.2 71.4 62.0 65.5 53.8 55.6 75.2 111.6 64.2 66.0 51.4 63.2 55.3 64.9
* Martinez et al. (2017b) 51.8 56.2 58.1 59.0 69.5 55.2 58.1 74.0 94.6 62.3 78.4 59.1 65.1 49.5 52.4 62.9
* Sun et al. (2017) 52.8 54.8 54.2 54.3 61.8 53.1 53.6 71.7 86.7 61.5 67.2 53.4 47.1 61.6 53.4 59.1
* Pavlakos et al. (2018) 48.5 54.4 54.4 52.0 59.4 49.9 52.9 65.8 71.1 56.6 65.3 52.9 60.9 44.7 47.8 56.2
* Luvizon et al. (2018),
single-crop 51.5 53.4 49.0 52.5 53.9 50.3 54.4 63.6 73.5 55.3 61.9 50.1 46.0 60.2 51.0 55.1

* Luvizon et al. (2018),
multi-crop 49.2 51.6 47.6 50.5 51.8 48.5 51.7 61.5 70.9 53.7 60.3 48.9 44.4 57.9 48.9 53.2

* Sun et al. (2018a) 47.5 47.7 49.5 50.2 51.4 43.8 46.4 58.9 65.7 49.4 55.8 47.8 38.9 49.0 43.8 49.6

Tekin et al. (2016) 102.4 147.7 88.8 125.4 118.0 112.4 129.2 138.9 224.9 118.4 182.7 138.8 55.1 126.3 65.8 125.0
Zhou et al. (2016) 91.8 102.4 97.0 98.8 113.4 90.0 93.8 132.2 159.0 106.9 125.2 94.4 79.0 126.0 99.0 107.3
Zhou et al. (2015) 87.4 109.3 87.1 103.2 116.2 106.9 99.8 124.5 199.2 107.4 139.5 118.1 79.4 114.2 97.7 113.0
Sun et al. (2017) 90.2 95.5 82.3 85.0 87.1 87.9 93.4 100.3 135.4 91.4 94.5 87.3 78.0 90.4 86.5 92.4
Pavlakos et al. (2017) 67.4 72.0 66.7 69.1 72.0 65.0 68.3 83.7 96.5 71.7 77.0 65.8 59.1 74.9 63.2 71.9
Sun et al. (2018a) 63.8 64.0 56.9 64.8 62.1 59.8 60.1 71.6 91.7 60.9 70.4 65.1 51.3 63.2 55.4 64.1

Ours (no occlusion aug.) 63.3 65.5 56.0 62.1 64.0 60.7 64.8 76.7 93.0 63.3 69.7 62.0 54.1 68.8 61.3 65.7
Ours (full) 49.1 54.6 50.4 50.7 54.8 47.4 50.1 67.5 78.4 53.1 57.4 50.7 40.1 54.0 46.1 54.2

Table 5.2: Mean per joint position error on the full Human3.6M dataset. Results marked with an asterisk (*) were
achieved using extra 2D pose dataset(s) in training. Boldface indicates the overall best results, while italic indicates
the best when using no extra 2D pose datasets.
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5 Synthetic Occlusion Augmentation: A Case Study

5.4 Conclusion
We have presented an architecture and data augmentation method for 3D human pose
estimation and have shown that it outperforms other methods both by achieving first
place in the 2018 ECCV PoseTrack Challenge and by surpassing the state of the art on
the full benchmark among methods using no additional pose datasets in training.
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6
MeTRo: A Metric-Scale Truncation-Robust

Heatmap Representation

In this chapter, we introduce a simple and effective heatmap-based method to predict
metric-scale, root-relative 3D human pose from monocular RGB images, even under
image truncation.

Heatmap representations have formed the basis of 2D human pose estimation
systems for many years, but their generalizations for 3D pose have only recently been
considered. This includes 2.5D volumetric heatmaps, familiar from the previous
chapters, whose X and Y axes correspond to image space and the Z axis to metric
depth around the subject. To obtain metric-scale predictions, these methods must
include a separate, explicit postprocessing step to resolve scale ambiguity. Further,
they cannot encode body joint positions outside of the image boundaries, leading to
incomplete pose estimates in case of image truncation.

We address these limitations by proposing metric-scale truncation-robust (MeTRo1)
volumetric heatmaps, whose dimensions are defined in metric 3D space near the
subject, instead of being aligned with image space. We train a fully convolutional
network to estimate such heatmaps from monocular RGB in an end-to-end manner.
This reinterpretation of the heatmap dimensions allows us to estimate complete
metric-scale poses without test-time knowledge of the focal length or person distance
and without relying on anthropometric heuristics in postprocessing. Furthermore,
as the image space is decoupled from the heatmap space, the network can learn to
reason about joints beyond the image boundary. Using ResNet-50V2 without any
additional learned layers, we obtain state-of-the-art results on the Human3.6M and
MPI-INF-3DHP benchmarks. As our method is simple and fast, it can become a useful

1Not to be confused with METRO, the MEsh TRansfOrmer (Lin et al., 2021a), published shortly after
our work.
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Generic
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backbone

2.2 m 2.2 m
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RGB
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Figure 6.1: We propose to use a generic fully convolutional network (ResNet-50V2, in
this chapter) to directly predict volumetric heatmaps in 3D metric space around the
subject. This visualization shows a 16×16×16 heatmap for the left wrist and the full
skeleton predicted by our model.

component for real-time top-down multi-person pose estimation systems. We make
our code publicly available to facilitate further research.2

This chapter is based on our paper Sárándi et al. (2020), presented at the 2020 IEEE
Conference on Automatic Face and Gesture Recognition (©2020 IEEE, with permission).
Additional materials beyond the contents of that paper provide more detailed ablation
experiments, as well as a detailed study of how the occlusion augmentation remains
effective with our novel representation. We also analyze whether the shape of the
texture content of the occluders matters more.

6.1 Overview
Human pose estimation from camera input is a long-standing problem in computer
vision with a wide range of applications including human–robot interaction (Zimmer-
mann et al., 2018), virtual reality (Alldieck et al., 2018), medicine (Belagiannis et al.,
2016; Srivastav et al., 2018) and commerce (Neverova et al., 2018). Since the adoption of
deep convolutional neural networks (CNN), and especially heatmap representations,
we have witnessed rapid progress in pose estimation research (Newell et al., 2016; Yang
et al., 2017; Ke et al., 2018).

Recently, deep CNNs have been successfully applied to the monocular 3D human
pose estimation task as well (Martinez et al., 2017b; Mehta et al., 2017b; Zhou et al.,

2https://vision.rwth-aachen.de/metro-pose3d
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Figure 6.2: By defining heatmaps in the 3D metric space around the person (bottom row)
we can directly predict scale-correct and complete poses. This is in contrast to prior
work (top row) that defines the X and Y heatmap axes in image space and requires
further postprocessing to obtain a metric-scale skeleton. The three columns show how
zooming affects the heatmap representation (a knee heatmap is shown along with
the soft-argmax decoded skeleton). Notice that our heatmap-space representation is
largely invariant to image scaling and estimates a complete pose even under body
truncation at the image boundaries.

2017; Luo et al., 2018a; Nibali et al., 2019). Here a person’s anatomical landmarks are
sought in 3D space, i.e., in millimeters, instead of pixels. These advances tie into one
of the major themes of computer vision research, reconstructing 3D structure from
images. Such tasks are especially challenging due to inherent geometric ambiguities.
One class of ambiguities arise because different 3D articulations may share the same
2D projection. Another ambiguity is between the size of an object and its distance,
since small objects near the camera look the same as large ones far away.

There is no clear consensus yet about the most effective way to represent and tackle
these problems. One promising line of approaches extend 2D joint heatmaps with a
depth axis, resulting in a 2.5D volumetric representation (Pavlakos et al., 2017; Iqbal
et al., 2018; Luvizon et al., 2018; Sun et al., 2018a). Finding heatmap maxima gives the
estimated pixel coordinates and root-relative depths per joint (a 2.5D pose). While
these estimates can be highly accurate, the 2.5D representation does not address the
challenging ambiguity between scale (person size) and distance. Indeed, to bridge the
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Figure 6.3: Overview of MeTRo. We first generate volumetric heatmaps using an
off-the-shelf fully convolutional backbone. Applying soft-argmax on these heatmaps
and scaling by an image-independent constant factor yields joint coordinates in metric
space up to translation. We minimize the root-relative ℓ1 loss. Focusing on simplicity,
no learnable parameters are introduced outside the standard backbone. Note that
reasoning about truncated body parts, scale recovery and back-projection also happen
implicitly within the backbone. Weak supervision from in-the-wild 2D-labeled data is
incorporated by aligning the metric prediction to the 2D ground truth by scaling and
translation and computing the ℓ1 loss (dashed arrows and boxes).

gap between a 2.5D and a 3D pose, one needs to perform scale recovery as a separate
postprocessing step. Multiple explicit anthropometric heuristics have been proposed as
scale cues, e.g., bone length priors (Pavlakos et al., 2017) or a skeleton length prior (Sun
et al., 2018c), computed by averaging over the training poses. However, these simple
heuristics have difficulties when the experimental subjects have diverse heights. A
further limitation is that 2.5D formulations are constrained to the estimation of joints
that lie within the image boundaries. This can be problematic in practical applications
with noisy bounding box detectors. While one could use an additional module to
estimate missing joints, it is preferable to learn the complete skeleton estimation in a
single unified stage.

Our goal in this chapter is to tackle the above limitations in a simple and efficient
manner, while keeping the structural advantages of fully convolutional heatmap
estimation, as opposed to numerical coordinate regression.

To this end, we propose training a fully convolutional network to output what
we call metric-scale truncation-robust (MeTRo) heatmaps as illustrated in Figure 6.1 on
page 70. All dimensions of these heatmaps are defined to have a fixed metric extent in
meters, a concept illustrated in Figure 6.2. This is an unconventional task definition for
fully convolutional networks (FCN). FCNs are predominantly applied for pixelwise
prediction tasks, such as semantic segmentation, where the input and output are
pixel-to-pixel aligned, or at least are in the same coordinate frame. In our proposed
approach, the input pixel positions and the output metric positions only satisfy a looser
form of spatial correspondence. Nevertheless, we show that somewhat surprisingly,
such a mapping can still be learned effectively by a standard modern FCN backbone.
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6.2 Related Work

While explicit prior knowledge of problem structure is known to be beneficial, it
is still an open question how much geometric computation needs to be performed
explicitly and how much can be learned by deep networks from data. By skipping
the 2.5D stage, we train the backbone FCN to implicitly reason about out-of-image
joints, discover scale cues and learn the geometric perspective back-projection in an
end-to-end manner. Our MeTRo heatmap representation can naturally encode body
parts lying outside the image, since the prediction volume’s bounds do not correspond
to the image bounds. As there is no need to design an explicit scale recovery step, the
pipeline becomes simpler, and the prediction of the root-relative pose requires neither
the focal length nor the root joint distance to be known at test time.

Recent approaches have achieved good generalization performance to in-the-wild
images by using abundant and diverse images with 2D pose labels in the training
procedure besides 3D data (Zhou et al., 2017; Luvizon et al., 2018; Sun et al., 2018a).
Applying such weak supervision is challenging in our representation, since the network
does not make any pixel-based predictions, its outputs are directly on a metric scale.
We tackle this by proposing a scale and translation invariant loss computation method
for 2D-annotated examples using an alignment layer. Combined with the recently
introduced differentiable soft-argmax (Levine et al., 2016; Nibali et al., 2018; Sun et al.,
2018a; Luvizon et al., 2019) layer, our method becomes end-to-end learned all the way
from image to final 3D metric-scale prediction as shown in Figure 6.3. Soft-argmax
also allows rapid training with low-resolution heatmaps and using dense prediction
with smaller strides at test time for higher quality results, without the need for a
decoder module. Here we find that the details of the striding mechanism are crucial
and propose a “centered striding” method that distributes the output neuron receptive
fields evenly over the image. Experimentally, our MeTRo heatmap estimation achieves
state-of-the-art results on the two largest 3D pose benchmarks, Human3.6M and MPI-
INF-3DHP. To isolate the effect of the representation, we perform direct comparisons
with 2.5D heatmap learning using bone length–based scale recovery (Pavlakos et al.,
2017), under otherwise equal training conditions. We find that scale cues can indeed
be learned implicitly in this fashion and MeTRo outperforms the baseline on most test
sequences.

6.2 Related Work

3D human pose estimation has had a long research history starting with hand-crafted
features and part-based models. Similar to other computer vision problems, the
transition to deep convolutional networks has led to a dramatic performance increase
in this task as well. For details, see Chapter 2, here we recapitulate only the most
relevant related works for this chapter.
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6 MeTRo: A Metric-Scale Truncation-Robust Heatmap Representation

6.2.1 Deep 3D Human Pose Estimation

Much of the inspiration in recent 3D pose estimator design has come from lessons
learned in 2D pose research. DeepPose (Toshev & Szegedy, 2014), the first neural
method for 2D pose estimation, directly regressed 2D body joint coordinates on the
RGB input via convolutional and fully connected layers. Later top-performing methods
have transitioned to predicting body joint heatmaps by fully convolutional networks
(e.g., Newell et al., 2016) as an intermediate representation. These heatmaps are
spatially discretized arrays (one for each joint), in which higher values indicate higher
confidence that the particular joint is located at the corresponding position.

One line of 3D pose research builds on top of 2D heatmaps and infers the 3D pose
from them by exemplar matching (Chen & Ramanan, 2017), regression (Martinez et al.,
2017b) or probabilistic inference (Tome et al., 2017). One inherent limitation of such
approaches is that the image content only indirectly influences the 3D estimation,
as it acts on the result of the 2D estimation stage. Furthermore, 2D-to-3D lifting is
performed in a numerical coordinate representation, which does not benefit from the
built-in convolutional structure of CNNs.

Nibali et al. (2019) predict three marginal heatmaps per body joint, for the XY ,
XZ and Y Z planes, respectively. Pavlakos et al. (2017) have proposed extending 2D
heatmaps with a root-relative metric depth axis. One can obtain the 2D pixel positions
and root-relative depths of the joints by finding maxima in the heatmaps.

One downside of heatmap representations has been the requirement of a dense
output, which can become especially costly in 3D. The recently proposed soft-
argmax (Levine et al., 2016; Nibali et al., 2018; Luvizon et al., 2019), a.k.a. integral
regression (Sun et al., 2018a), method greatly alleviates this problem. As opposed
to hard-argmax, which simply finds the location of the highest heatmap activation,
soft-argmax is computed as the weighted average of all voxel grid coordinates, using
softmaxed heatmap activations as the weights. For example, a low resolution heatmap
can encode a joint position lying halfway between two bin centers by outputting 0.5
for both bins. By virtue of being differentiable unlike hard-argmax, it also obviates the
need for explicit heatmap-level supervision (e.g., voxelwise cross-entropy). Instead,
the loss can be computed (and its gradients backpropagated) from the coordinates
yielded by soft-argmax.

Besides 2D heatmaps, Mehta et al. (2017b) estimate three further output channels per
joint, the so-called location maps. These are read out at the position of the corresponding
heatmap’s peak to obtain the X , Y and Z coordinates on a metric scale. Note how in
this approach the final 3D joint coordinates are generated in the form of activation
values (of the location maps at the heatmap peaks), as opposed to high-activation
locations. We can thus think of it a conceptual hybrid of direct numerical coordinate
regression and heatmap estimation. A downside of this method is that it requires
high-resolution location maps and cannot benefit from the soft-argmax approach.
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6.2.2 Scale Ambiguity

It is well known that projecting a 3D world onto a 2D image plane results in ambiguity
between size and distance (depth). However, the end goal for 3D scene understanding
and 3D human pose estimation in particular is a metric-space output at the true scale.
The ambiguity can only be resolved using semantic scale cues, i.e., prior knowledge
of the usual size of humans and other objects appearing in the scene. Unfortunately,
not all papers include a description of how this step is performed. Some authors
report their results assuming a known focal length and known ground-truth root
joint distance (Sun et al., 2018a,b; Chen et al., 2019b; Nibali et al., 2019) and leave their
estimation as a separate task. A simple anthropometric approach is used by Pavlakos
et al. Given 2D pixel positions and root relative depth estimates from volumetric
heatmaps, they optimize the absolute person distance such that the back-projected
skeleton’s bone lengths match the average over the training set in a least squares
sense (Pavlakos et al., 2017). A detailed description of this optimization problem is
given in Pavlakos et al. (2017, supp.). We use this scale recovery approach as our
main baseline comparison throughout the chapter. Sun et al. (2018c) employ a similar
idea, but use the overall skeleton length and a weak perspective model instead. Some
recent works have shown that direct regression of person height from an image is a
challenging task (Dantcheva et al., 2018; Günel et al., 2019). Véges and Lőrincz (2019)
make use of a monocular depth prediction network pretrained on various indoor and
outdoor datasets to help with absolute person distance estimation.

6.2.3 Truncated Pose Estimation

Single-person 3D pose estimation benchmarks, such as Human3.6M (Ionescu et al.,
2014), assume that the whole person is visible in the input image. In practical
applications, however, bounding boxes are obtained using imperfect detectors, which
can result in body truncation, especially in high-occlusion scenes. A possible remedy
could be extending the detection crops by amodal completion (Kar et al., 2015), but
this would result in a loss of image resolution. Generally, pose estimation performance
under truncation has not been studied extensively in the literature. Recent work by
Park et al. (2020) uses cropping data augmentation to improve 2D pose estimation.
Vosoughi and Amer (2018) create randomly truncated crops from Human3.6M images,
and show that current methods perform poorly on truncated person images, even
when only considering the present (within-boundary) joints. They tackle the problem
using direct numerical coordinate regression, similar to early 2D pose estimation
methods (Toshev & Szegedy, 2014). We show that our approach performs significantly
better in the truncated setting. Other methods, such as LCR-Net (Rogez et al., 2017),
can also produce out-of-image predictions, but this aspect has not been explicitly
evaluated by its authors.
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6 MeTRo: A Metric-Scale Truncation-Robust Heatmap Representation

6.3 Method

The input to our model is an RGB image crop I ∈ Rw×h×3 depicting a person. The
desired output is a 3D skeleton, consisting of J joint coordinates

{
(∆Xj,∆Yj,∆Zj)

T
}J
j=1

in millimeters, up to arbitrary translation (hence the ∆ symbols).

6.3.1 Metric-Space Volumetric Heatmap Representation

As is common in heatmap-based approaches, we apply a fully convolutional backbone
network, with effective stride s to produce an array with d · J spatial output channels.
Here d is the number of discretization bins along the depth axis of the prediction
volume. We then split the array along the channel axis into J volumes, each of
shape (w/s) × (h/s)× d. 3D spatial softmax is applied over each of them, resulting
in volumetric heatmap activations V (j) ∈ R(w/s)×(h/s)×d. Up to this point the process
is similar to other volumetric heatmap approaches (Pavlakos et al., 2017; Sun et al.,
2018a). The difference lies in how the heatmap axes are interpreted to yield metric-scale
coordinates. In particular, the 3D joint coordinates are decoded using soft-argmax
with fixed scaling factors:∆Xj

∆Yj

∆Zj

 =
∑
p,q,r

V (j)
p,q,r ·

p · s/w ·W
q · s/h ·H
r · 1/d ·D

 , (6.1)

where the p, q, r are zero-based integer indices into the volumetric heatmap array
and W,H,D are the fixed metric width, height and depth extents of the full pre-
diction volume. We set these extents as 2.2 meters in our work, which allows
capturing people of usual height even when stretched out. In fact, the side length
of largest bounding cube needed to capture all joints of a person in the training
sets of Human3.6M and MPI-INF-3DHP is 2.06 and 1.92 meters, respectively. De-
pending on striding logic (see Section 6.3.3 on page 78), (6.1) needs to be adjusted
slightly, e.g., the volume size may change with denser striding (Figure 6.4). The
final root-relative prediction is obtained by subtracting the predicted root coordi-
nates from all joint positions. Supervision is applied on these root-relative co-
ordinates. This means that the position of the root joint prediction within the
volume is not explicitly supervised and the network can place the skeleton any-
where within the prediction volume. The gradients are backpropagated through
the root joint subtraction operation. No camera calibration–based back-projection,
nor bone or skeleton size–based rescaling is needed for this root-relative prediction.
The network is trained to perform these operations implicitly within the backbone.
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6.3 Method

normal striding centered striding

Figure 6.4: Receptive field centers of the output neurons in a strided FCN operating on
a 256×256 image (+: stride 32, ×: stride 16). left: normal striding logic, where the top
left result is kept per 2×2 block. Note that denser striding skews the sample density
towards the bottom and right in the border areas. right: by reversing the stride logic in
the last strided layer (i.e., bottom right result taken, instead of top left), the samples are
centered and the increased striding density is distributed evenly.

6.3.2 Architecture

In contrast to prior work that employs decoders with upsampling layers and multiple
refinement stages, we show that the task can be tackled in a significantly simpler
fashion. Indeed, we simply apply the ResNet-50V2 (He et al., 2016b) backbone to
directly predict spatial heatmaps, without any additional learnable layers, such as
transposed convolutions. By default, ResNet has an effective stride of 32, resulting in
heatmaps of spatial size 8×8×8 from the input image of size 256×256 during training.
The depth of the volumetric heatmap is set to 8. When testing on single-person
datasets, we apply the trained network with an effective stride of 4, to obtain heatmaps
with spatial size 64, which is the typical size used in prior work (Pavlakos et al., 2017;
Sun et al., 2018a). This is called dense prediction and is commonly used in image
segmentation (Chen et al., 2017a). In this technique, striding is removed from a given
number of convolutional layers and the dilation rate of subsequent convolutions is
increased correspondingly. As we will see, dense prediction increases the compute
requirements but also improves accuracy, while still allowing real-time execution.

77
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6.3.3 Centered Striding
When changing striding density at test time compared to training time, it is important to
consider how the distribution of heatmap receptive field centers is affected. The left side
of Figure 6.4 shows a 256×256 image processed with training stride 32 (+) and test stride
16 (×). The coverage changes significantly between training and test, and is not symmet-
ric over the image. While not an issue for pixel-labeling tasks, soft-argmax is a weighted
vote-averaging scheme and introducing new voting positions in an uneven manner
skews the prediction result. To tackle this issue, we propose centered striding, where the
striding logic in the last convolutional layer of the backbone is “reversed,” such that it
outputs the bottom right result per each 2×2 block. The result is a more evenly distributed
coverage over the image, with each original sampling position replaced with four new
ones equally spaced around it. This benefit is evaluated in Section 6.6 on page 83.

6.3.4 Scale and Translation Agnostic 2D Loss
Similar to recent approaches (Zhou et al., 2017; Luvizon et al., 2018; Sun et al., 2018a), we
train simultaneously on 3D-labeled data from motion capture studios and 2D-labeled,
in-the-wild data from the MPII dataset (Andriluka et al., 2014), to incorporate more
appearance variation in the training process. Half of each mini-batch is filled with
examples of either kind. Supervision via 2D labels is straightforward when using 2.5D
heatmaps, as the X and Y heatmap axes correspond to the space in which the 2D
labels are defined. However, since our prediction volume is defined on a metric scale
and is not aligned with image space, we propose a 2D loss computation method that
is invariant to prediction scale and translation. To this end, we first orthographically
project the predicted 3D skeleton onto the image plane by discarding the Z coordinate.
Then we align the projected prediction to the 2D pixel-scale ground truth by translation
and uniform scaling to the least-squares optimal fit before computing the loss. This
alignment layer is differentiable and gradients can be backpropagated through it. We
note that a similar scale-invariant loss has been used by Rhodin et al. (2018a) to enforce
multi-view consistency of 3D poses.

6.3.5 Truncated Pose Estimation
Our metric-space heatmap representation decouples the image boundary from the
heatmap boundary. This enables the prediction of joint locations outside the image
frame without additional design effort, the network is simply trained to output complete
poses at a metric scale, regardless of how the input image is scaled or cropped. To
evaluate this aspect, we follow Vosoughi and Amer (2018) by randomly cropping
Human3.6M inputs, keeping at least 1/4 of the area of the person bounding square.
Examples of such crops are in the second row of Figure 6.7 on page 85. We consider
two scenarios. In the first one, the above described sampling of truncated crops is only
performed at test time. In the second case, such crops are used for training as well.
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6.3 Method

6.3.6 Training Details
Loss. Prior work has shown that the ℓ1 loss is preferable in soft-argmax-based pose
estimation (Sun et al., 2018a). To balance the losses computed on 3D and 2D-annotated
examples, we use a fixed weighting factor tuned on a separate validation set of
Human3.6M, yielding the overall loss as

L = Lann3D + λLann2D. (6.2)

Training Schedule. We initialize the network with ImageNet-pretrained weights and
use the Adam optimizer with weight decay (Loshchilov & Hutter, 2019) and a batch
size of 64. We decay the learning rate exponentially by an overall factor of 100, in two
parts: from 10−4 to 3.33 × 10−5 over 25 epochs and from 3.33 × 10−6 to 10−6 in 2 final
cooldown epochs.

Randomness. As usual in deep learning, several sources of randomness influence
the exact results of an experiment: random weight initialization, data shuffling, data
augmentation and hardware-level non-determinism of execution order. We control
these (except the last) by consistently seeding the random number generators. To
distinguish random fluctuations from algorithmic differences, we repeat our main
experiments with 5 different seeds and report the mean and standard deviation of the
evaluation metrics. In Section 6.8.1 on page 95, we will analyze the repeatability of our
experiments in more detail.

6.3.7 Intuition
As described above, our network is trained to output complete skeletons at a fixed
metric scale, regardless of image zooming and truncation. However, at this point it is
not clear how such predictions are produced by the network. To gain more intuition,
we visualize projected heatmaps in Figure 6.5, allowing us to better understand how
this fully convolutional model is able to achieve approximate invariance to image scale
and truncation.

In particular, we can see that the soft-argmax output is not necessarily in the middle
of the heatmap’s most prominent peak. As soft-argmax yields the heatmap’s center
of mass, even distant heatmap values have an influence. Intuitively, this allows the
network to move the prediction result towards different heatmap locations by adding
counter-balancing correction weights, for example at the image sides or at the person
center.

Regarding truncation, the last row shows that the model can infer that the arms
must lie above waist level, since there is no visual evidence of them in the image.
To understand how a fully convolutional network can “know” where the truncation
happens, we refer to Islam et al. (2020), who show that even fully convolutional
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Right kneeInput crop Right wrist Left ankle
Metric-scale heatmaps (XY projection, side=2.2 m)

Figure 6.5: A closer look at how scale and truncation robustness is achieved in the
heatmaps. We plot the projected metric-scale heatmaps for 3 joints with the full soft-
argmax skeleton for reference. We observe that the predicted skeleton is approximately
invariant to change in scale and truncation. Since the metric size of the person does
not change with image scaling, the backbone learns to output heatmaps with a similar
center of mass, regardless of image scale. Note that the heatmaps do not align with
image space and this is intended by design. (The broad peaks are a result of training
the model at low, 8×8 heatmap resolution.)

networks can encode positional information as a result of the zero paddings within
convolutional layers. This means that the location of the top image border can be used
as a cue for the network to shift the full skeleton downwards inside the heatmap volume,
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6.4 Baseline using 2.5D Heatmaps

2D pose and root-

relative metric depths
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2.5D loss

3D soft-

argmax

2.5D heatmap

Backbone
1x1

conv

Camera intrinsics

Average training
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(Test-time post-processing)

Figure 6.6: Baseline 2.5D Architecture. We use this alternative inspired by Pavlakos
et al. (2017, supp.), for ablative comparison experiments.

such that it fits. Note that the network is free to place the skeleton anywhere within
the volume, since the root prediction is subtracted before computing the root-relative
loss. This means that the exact position of the skeleton in this visualization has no
effect on the actual model outputs. Instead, the network can place the skeleton such
that it best fits inside the prediction volume.

6.4 Baseline using 2.5D Heatmaps

For comparison, we implement a 2.5D baseline derived from Pavlakos et al. (2017), who
introduced volumetric heatmaps for 3D human pose estimation. Pavlakos et al. use a
coarse-to-fine estimation scheme with a stacked hourglass architecture (Newell et al.,
2016) and no soft-argmax. To make the baseline directly comparable to our results, we
instead use the architecture depicted in Figure 6.6. This baseline directly estimates
2.5D heatmaps through a 1×1 convolution at the end of the backbone. We then use
soft-argmax, and compute the ℓ1 loss on the resulting coordinates. This makes the
baseline similar to the method by Sun et al. (2018a), except the latter uses additional
learned layers and does not perform scale recovery. As a test-time postprocessing
step, the baseline uses the bone length–based optimization method from Pavlakos et al.
(2017, supp.) to recover the root joint depth, which we briefly reiterate here. Given an
assumed value for the root joint depth Z0 and known camera intrinsics, the 2.5D pose
can be back-projected into metric space and each bone’s resulting length bi(Z0) can be
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calculated. The optimal Z0 is then the one that minimizes the sum of squared bone
length discrepancies, as compared to the average training bone lengths ti:

Z∗
0 = argmin

Z0

∑
i∈bones

(bi(Z0)− ti)
2, (6.3)

where we only use bones, whose both ends are predicted to lie within the image (further
from the border than 1 stride length). This is a nonlinear least-squares problem, and we
solve it using the Levenberg–Marquardt algorithm initialized at Z0 = 2m. To reiterate,
as in Pavlakos et al. (2017), the absolute pose is not supervised during the baseline’s
training and the optimization of Z0 is not backpropagated through, for simplicity. We
note, however, that the recent development of differentiable optimization layers (Amos
& Kolter, 2017; Agrawal et al., 2019) could, in principle, enable such a solution as well.

6.5 Datasets and Preprocessing
We conduct experiments on Human3.6M (Ionescu et al., 2014) and MPI-INF-3DHP
(3DHP; Mehta et al., 2017a).

On Human3.6M, we evaluate according to both Protocols 1 and 2. We use the
provided bounding boxes and downsample videos from 50 to 10 fps. To further reduce
redundancy, training frames are only used if at least one body joint moves at least
100 mm since the previous kept frame.

We use the 2D-labeled MPII (Andriluka et al., 2014) for weak supervision, following
the idea by Zhou et al. (2017). Only arm and leg joints are used from MPII, as we
found these to be the most consistently labeled across datasets. We only use instances
explicitly marked as “well separated” from other people and take the provided person
centers and sizes as the center and side length of the bounding box.

On 3DHP, we follow Zhou et al. (2017) in moving the hips towards the neck by a
fifth of the pelvis–neck vector before comparing with MPII-annotated skeletons for
2D loss computation. We evaluate w.r.t. both ground truth variants: unnormalized
metric-space poses and “universal” (height-normalized) ones. We use only the chest-
height cameras as Mehta et al. (2017a), and only examples where all joints are within
the image. We generate 3DHP bounding boxes by combining the bounding box of
labeled joints and the most confident person detection of YOLOv3. The same frame
sampling strategy is used as described above for Human3.6M.

We crop the image to the person’s bounding square and resize it to 256×256 px.
Perspective effects must be taken into account when centering the image on the subject
as this induces an implicit rotation of the camera (Mehta et al., 2017a). We compensate
for this effect by transforming image and the target joint positions to match the
rotated camera frame. The green-screen 3DHP sequences are gamma-adjusted with
an exponent of 0.67.
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We apply geometric augmentations (scaling, rotation, translation, horizontal flip)
and color distortion (brightness, contrast, hue, saturation). Synthetic occlusion is
added with 70% probability, half of which are rectangles with uniform white noise as
in Zhong et al. (2020), half are segmented non-person objects from the Pascal VOC
dataset (Everingham et al., 2012) as in Chapters 4 and 5. On the 3DHP dataset we
also apply background augmentation with 70% probability following Mehta et al.
(2017a), but no compositing for clothes and chair. The backgrounds are taken from the
INRIA Holidays dataset (Jegou et al., 2008) excluding person images. We do not use
ensembling or test-time augmentation, all evaluation is done on a single crop.

We use the standard metrics from the literature. The main metric on 3DHP is the
percentage of correct keypoints (PCK), i.e., the fraction of joints predicted within
a certain distance of the ground truth (150 mm by convention). The AUC metric
is the area under the PCK curve as the threshold ranges from 0 to 150 mm. The
metric on Human3.6M is the mean per joint position error (MPJPE). We follow the
usual protocols, evaluating 14 joints on 3DHP, excluding the root, and 17 joints on
Human3.6M, including the root.

6.6 Main Results
On Human3.6M without ground-truth depth or scale information, we achieve 49.3 mm
MPJPE, which is within the margin of error compared to the state of the art by Xu et al.
(2020b) (49.2 mm), while using a considerably simpler approach (see Table 6.1). (In
all tables, the number after “±” is the standard deviation of 5 repeated experiments
with different random seeds, therefore the standard error of the mean is a fifth of this
value.) This is only surpassed by Chen et al. (2019b) (48.4), however they do use the
ground-truth root joint depth for back-projection at test-time and do not perform scale
recovery. Similarly, Sun et al. (2018a) obtain comparable results (49.6), however they
also access the ground-truth root joint depth at test time, for image cropping (Sun et al.,
2018b).

Besides simplifying the prediction pipeline and allowing for truncation-robust
prediction (see below), our metric heatmap representation also performs better than the
2.5D baseline with bone length–based scale recovery under the exact same experimental
conditions.

Table 6.7 on page 88 shows that training data augmentations improve performance
by a large margin.

On Protocol 2 (Table 6.2 on page 85), the benefit of our method is masked by the
use of Procrustes alignment, which explicitly ignores the quality of scale recovery. It
is therefore unsurprising that our method performs about equally well as the 2.5D
variant (within the standard deviation of repeated experiments).

On 3DHP, our method outperforms prior works by a large margin, including
ones trained on more datasets as well (Table 6.3 on page 86). Both with universal

83



6
M

eT
Ro

:A
M

et
ric

-S
ca

le
Tr

un
ca

tio
n-

Ro
bu

st
H

ea
tm

ap
Re

pr
es

en
ta

tio
n

Dir. Dis. Eat Gre. Phn. Pose Pur. Sit SitD Sm. Pht. Wait Walk WD WT Avg ↓
Methods using ground-truth scale or depth information at test time

Sun et al. (2017) 52.8 54.8 54.2 54.3 61.8 53.1 53.6 71.7 86.7 61.5 67.2 53.4 47.1 61.6 53.4 59.1
Nibali et al. (2019) – – – – – – – – – – – – – – – 57.0
Luvizon et al. (2018) 51.5 53.4 49.0 52.5 53.9 50.3 54.4 63.6 73.5 55.3 61.9 50.1 46.0 60.2 51.0 55.1
Luvizon et al. (2020) 43.7 48.8 45.6 46.2 49.3 43.5 46.0 56.8 67.8 50.5 57.9 43.4 40.5 53.2 45.6 49.5
Sun et al. (2018a) 47.5 47.7 49.5 50.2 51.4 43.8 46.4 58.9 65.7 49.4 55.8 47.8 38.9 49.0 43.8 49.6
Chen et al. (2019b) 45.3 49.8 46.1 49.6 48.2 41.7 47.4 53.1 55.2 48.0 57.7 45.6 40.8 52.4 45.2 48.4

Methods using no ground truth scale or depth information at test time
Pavlakos et al. (2017) 67.4 72.0 66.7 69.1 72.0 77.0 65.0 68.3 83.7 96.5 71.7 65.8 74.9 59.1 63.2 71.9
Zhou et al. (2017) 54.8 60.7 58.2 71.4 62.0 53.8 55.6 75.2 111.6 64.2 65.5 66.0 51.4 63.2 55.3 64.9
Martinez et al.
(2017b) 51.8 56.2 58.1 59.0 69.5 55.2 58.1 74.0 94.6 62.3 78.4 59.1 49.5 65.1 52.4 62.9

Fang et al. (2018) 50.1 54.3 57.0 57.1 66.6 53.4 55.7 72.8 88.6 60.3 73.3 57.7 47.5 62.7 50.6 60.4
Yang et al. (2018) 51.5 58.9 50.4 57.0 62.1 49.8 52.7 69.2 85.2 57.4 65.4 58.4 43.6 60.1 47.7 58.6
Pavlakos et al. (2018) 48.5 54.4 54.4 52.0 59.4 49.9 52.9 65.8 71.1 56.6 65.3 52.9 44.7 60.9 47.8 56.2
Liu et al. (2019a) 47.0 53.1 50.3 48.8 56.0 48.1 47.6 65.9 72.6 52.3 61.4 49.1 39.3 54.2 40.6 52.4
Xu et al. (2020b) 40.6 47.1 45.7 46.6 50.7 45.0 47.7 56.3 63.9 49.4 63.1 46.5 38.1 51.9 42.3 49.2
Sharma et al. (2019) 48.6 54.5 54.2 55.7 62.6 50.5 54.3 70.0 78.3 58.1 72.0 55.4 45.2 61.4 49.7 58.0
Cai et al. (2019) 46.5 48.8 47.6 50.9 52.9 48.3 45.8 59.2 64.4 51.2 61.3 48.4 39.2 53.5 41.2 50.6

2.5D baseline 45.1 50.4 45.4 47.8 50.0 44.6 49.8 59.0 69.4 49.4 56.5 48.0 39.6 49.4 45.0 50.2±0.3
MeTRo (ours) 46.3 48.3 43.3 48.2 50.2 45.1 46.1 56.2 66.8 49.3 54.5 46.7 40.1 49.6 46.2 49.3±0.7

Table 6.1: Evaluation on Human3.6M Protocol 1 (subjects 9 and 11), using mean per joint position error (MPJPE)
without Procrustes alignment. All methods use extra 2D-labeled pose data in training.
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6.6 Main Results

P-MPJPE↓
Nie et al. (2017) 79.5
Pavlakos et al. (2017) 51.9
Sun et al. (2017) 48.3
Martinez et al. (2017b) 47.7
Sun et al. (2018a) 40.6
Nibali et al. (2019) 40.4
Habibie et al. (2019) 49.2
Xu et al. (2020b) 38.9
Chen et al. (2019b) 33.7

2.5D baseline 34.5±0.4
MeTRo (ours) 34.7±0.5

Table 6.2: Comparison of Procrustes-aligned MPJPE with prior work on Human3.6M
under Protocol 2 (test subject S11).

H36M Camera

H3.6M
(partial
body)

Camera

3DHP Camera

MPII Camera

Figure 6.7: Qualitative Results. Predictions are shown in color, ground truth in gray
(except for MPII, where it is unavailable). Green spheres mark predictions within
150 mm of the ground truth, red cubes beyond that threshold. Note that our method
performs well on truncated (partial body) images as well (second row).
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On
floor Sport Misc. Green

screen
No

gr.sc.
Out-
door Total

PCK↑ PCK↑ AUC↑ MPJPE↓

Universal, height-normalized skeletons (simplified scale recovery task
Rogez et al. (2017)∗ 70.5 56.3 58.5 69.4 39.6 57.7 57.6 – – – 59.7 27.6 158.4
Zhou et al. (2017)∗H+M 85.4 71.0 60.7 71.4 37.8 70.9 74.4 71.7 64.7 72.7 69.2 32.5 137.1
Zhou et al. (2019)H+M – – – – – – – 75.6 71.3 80.3 75.3 38.0 –
Mehta et al.
(2017b)∗3+M+L+H 87.7 77.4 74.7 72.9 51.3 83.3 80.1 – – – 76.6 40.4 124.7

Mehta et al.
(2017a)∗3+M+L+H 86.6 75.3 74.8 73.7 52.2 82.1 77.5 84.6 72.4 69.7 75.7 39.3 117.6

Mehta et al. (2018)∗3+M+L+C 83.8 75.0 77.8 77.5 55.1 80.4 72.5 – – – 75.2 37.8 122.2
Luo et al. (2018a,b)3+M+H 95.5 82.3 89.9 84.6 66.5 92.0 93.0 – – – 84.3 47.5 84.5
Nibali et al. (2019)3+M – – – – – – – – – – 87.6 48.8 87.6

2.5D baseline3+M 95.1 90.7 86.8 92.4 74.2 94.1 91.7 92.1 89.0 87.7 89.9±0.2 52.8±0.4 79.7±0.6

MeTRo (ours)3+M 95.0 91.8 90.2 92.1 73.4 95.1 91.8 93.4 90.3 86.5 90.6±0.4 56.2±0.5 74.9±1.4

Metric-scale skeletons (full scale recovery task
2.5D baseline3+M 93.1 89.3 83.6 93.1 73.7 93.2 91.1 89.0 87.9 89.4 88.7±0.6 48.6±1.3 87.1±2.2

MeTRo (ours)3+M 94.0 89.2 87.1 89.1 68.9 92.6 90.3 90.1 87.8 85.7 88.2±0.5 48.7±0.7 88.4±1.3

Table 6.3: Comparison on MPI-INF-3DHP with prior methods. ∗Evaluated with the first version of the dataset, with
some annotation difference. Dashes (–) reflect a lack of published information. Superscripts indicate the training
data (first characters of 3DHP, Human3.6M, MPII, LSP and COCO).
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6.6 Main Results

Human3.6M MPI-INF-3DHP
PCK↑ AUC↑ MPJPE↓ PCK↑ AUC↑ MPJPE↓

2.5D GT root depth 96.6 68.8 49.0 90.8 56.1 74.2
2.5D GT bone length 96.4 67.0 51.9 90.3 56.1 74.6

2.5D avg train bones 96.6 68.1 50.2 89.6 52.1 80.6
MeTRo (ours) 97.0 68.6 49.3 89.6 52.6 81.1

Table 6.4: Comparison with baseline methods of scale recovery, with or without access
to ground truth information. For both datasets, metric-scale skeletons are used with
the same 17 joints for comparability. The first two comparison methods access the
ground truth at test time.

All joints Present joints

Mehta et al. (2017b)∗ 396.4 338.0
Zhou et al. (2017)∗ 400.5 332.5
Vosoughi and Amer (2018) 185.0 173.6

MeTRo∗ 124.7 76.8
MeTRo 77.8 59.8

Table 6.5: MPJPE scores on Human3.6M under truncation, evaluating all or only the
present (within-frame, non-truncated) joints. (∗Training was not performed with
truncated crops.) Results of other methods are taken from Vosoughi and Amer (2018).

(height-normalized) skeletons and true metric-scale ones, the MeTRo representation
outperforms the baseline on green-screen studio images, however, the outdoor scenes
were recorded on an empty field without scale cues and the explicit bone length–based
scale recovery performs better there. Qualitative results are in Figure 6.7 on page 85.

We analyze scale recovery in more detail in Table 6.4. As expected, the idealized
method with test-time access to the ground-truth root joint depth performs best on
both Human3.6M and 3DHP. The proposed approach performs better than the 2.5D
baseline using average bone lengths on Human3.6M and comparably on 3DHP. On
Human3.6M, MeTRo closes most of this scale recovery gap between the 2.5D average
bone length baseline and the idealized variant using the true root. Interestingly, our
approach outperforms even the 2.5D variant using ground-truth bone lengths for
each test frame. On 3DHP, MeTRo’s scale recovery performance is similar to the 2.5D
baseline (equal PCK, better AUC, slightly worse MPJPE). Further, on this dataset,
access to ground-truth scale information provides a larger improvement than on
Human3.6M, highlighting the importance of testing on many subjects.
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6 MeTRo: A Metric-Scale Truncation-Robust Heatmap Representation

Striding
variant

Test stride

32 16 8 4

MPJPE Normal strides 53.1 52.5 52.7 52.9
Center-aligned 50.9 50.2 50.0 49.3

Speed
(crop per sec.)

No batching 160 150 105 38
Batch size 8 511 475 292 92

Table 6.6: Impact of Striding on Speed and Accuracy. We measure inference speed
(crops per second) and error (Human3.6M MPJPE) tradeoff with the two striding
variants from Figure 6.4 on page 77.

Geometry Color Occlusion MPJPE

✓ – – 58.0
✓ ✓ – 52.8
✓ ✓ ✓ 49.3

Table 6.7: Augmentations. We perform an ablation study on data augmentations on
Human3.6M, showing that strong augmentation is important.

When tested on truncated crops, our method by far outperforms prior approaches
(Table 6.5). This is true even for our default training configuration, but performance
improves substantially when training on truncated images as well. The method
is robust to truncation of up to 7 or 8 joints (of the 17) before overall performance
substantially degrades (Figure 6.8). Given the obvious ambiguity introduced by
truncation, it is noteworthy that even truncated joints can be estimated with as little as
about 100 mm average error. Qualitative examples are in the second row of Figure 6.7
on page 85, showing that our method can handle strongly truncated cases as well.

6.6.1 Speed–Accuracy Tradeoff

Given a bounding box crop, inference only requires a single forward pass of a standard
backbone. Table 6.6 shows that 511 crops can be processed per second on an RTX
2080 Ti desktop GPU when operating on batches of 8 crops at stride 32 (the time cost
of performing the detection stage is not considered). Varying the heatmap resolution
using dense prediction provides diminishing returns (Table 6.6), showing that soft-
argmax can cope with heatmaps of very coarse resolution. This means our method is
attractive for use in top-down multi-person pose estimation systems as well.
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Figure 6.8: Analysis of robustness to truncation on Human3.6M. Average performance
remains relatively stable up to 7 truncated joints.

6.7 Detailed Occlusion Experiments

In this section, we provide a deeper analysis of the MeTRo method regarding occlusion
robustness and occlusion augmentation effects, going beyond the experimental results
published in Sárándi et al. (2020), the main paper this chapter is based on. These
experiments were carried out using an earlier version of the MeTRo method, without
weak supervision with 2D pose estimation (see Figure 6.9), which is why we dedicate
a separate section for these results.

First, we explore what makes augmentation with textured real objects so effective.
Does it result from the realistic low-level image statistics of the synthetic occluder (the
content of the occluder), or from the irregular silhouette (or shape), resulting from the
use of object masks?

Next, we explore if the benefits of occlusion augmentation can be fully attributed to
the fact that 3D datasets show limited appearance variability, which was our original
motivation in pursuing this line of work. To test this, we perform an experiment
with occlusion augmentation on 2D datasets consisting of in-the-wild images, as
opposed to the 3D-annotated studio data that we used so far in this chapter. Any
improvements that occlusion augmentation brings on such in-the-wild data cannot
simply be attributed to an obvious lack of appearance variation in the images.
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 backbone 
3D soft
argmax

Zi
Volumetric
heatmaps

Subtract
root

pred.

L1
loss

Ground
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Reshape
Yi

Xi

 Generic 

(ResNet)

Metric coordinates
around subject

Root-relative coordinates
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Figure 6.9: Overview of our approach used in Section 6.7. Here we do not use weak
supervision with 2D data.

6.7.1 Default Setup

Here we use a simplified model depicted in Figure 6.9, where the weak supervision
with 2D examples is not applied, and instead we perform pretraining based on 2D
pose estimation on MPII. For the 3D task, the prediction heatmap has dimensions
16×16×16 except when marked otherwise.

Adam optimizer is used with batch size 32 and exponentially decaying learning rate
from 10−4 to 10−5. We use 20 epochs on Human3.6M and 30 on 3DHP.

Training on MPII is performed using effective stride 32 in the backbone, resulting
in 8×8 heatmaps for the 256×256 px inputs. The learning rate is decayed from 10−4 to
10−5 over 400 epochs, after which 10 epochs with 10−6 were performed. We trained on
the 14 joints used in the official MPII evaluation protocol. Since the model trained with
Obj-Texture augmentation performed best on the validation set, we use the weights
obtained using this augmentation for all experiments designated as “MPII-pretrained.”
The pretraining was performed on the whole MPII train+val set.

6.7.2 Augmentation: Shape vs. Content

To disentangle the effect of occluder shapes (silhouettes) and contents (the pixel values
of the occluder), we experiment with two kinds of shapes and two kinds of contents.
For shapes, we consider a rectangle (Rect) and object silhouettes (Obj; from Pascal
VOC). For texture, we use uniform random white noise (Noise) and image content
from Pascal VOC (Texture). There are thus four possible combinations of shape and
content. In this terminology, Rect-Noise is the original random erasing augmentation,
Obj-Texture was used in the previous chapter, Rect-Texture samples a rectangle as
random erasing does but fills it with content from Pascal VOC images, and vice versa,
Obj-Noise uses object silhouettes filled with random noise (Obj-Noise). See Figure 6.10
for samples of fully augmented training examples. Occlusions are applied with 70%
probability for each image (independently from any background augmentation on
3DHP).
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6.7 Detailed Occlusion Experiments

Figure 6.10: Examples of random synthetic occlusion augmentations in conjunction
with all other augmentations. Each column, in order, shows a Human3.6M and an
MPI-INF-3DHP training example augmented with Rect-Noise, Rect-Texture, Obj-Noise
and Obj-Texture augmentation, respectively. Background augmentation is also shown
for MPI-INF-3DHP.

Table 6.8 on page 93 shows how the synthetic occluder’s shape and filling affect
accuracy on the two 3D pose estimation datasets. We can see that on Human3.6M, tex-
tured objects yield best performance, while on 3DHP, which already uses background
augmentation, rectangles filled with noise give best results.

6.7.3 Robustness Analysis

In this section, we report on occlusion robustness experiments similar to those included
in Chapter 4, but we now use our MeTRo representation, perform pretraining on MPII,
experiment with the MPI-INF-3DHP dataset besides Human3.6M and vary the colors
of test-time occluders as well (as opposed to only using solid black as in Chapter 4).
We apply three types of challenging synthetic occlusion patterns, not seen by any of
the models during training: Pascal VOC objects (disjoint from those used for training
augmentation), multiple black circles, multiple white oriented bars and a colored
rectangle (see Figure 6.12 on page 93).

As is shown in Figure 6.11, while augmenting with VOC objects (red line) generalizes
to all test occlusion patterns, random erasing (blue line) is not as good for robustness.

Furthermore, the improvement in robustness is more modest on 3DHP than on
Human3.6M. This can be attributed to the more difficult and diverse poses contained
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Figure 6.11: Occlusion robustness analysis on Human3.6M (top) and MPI-INF-3DHP (bottom). The four columns
visualize robustness to three types of synthetic occlusion at test time: Pascal VOC objects (disjoint set from those used
in augmentation), black circles, white oriented bars and a rectangle filled with a random solid color (see Figure 6.12).
The degree of occlusion is the percentage of occluded pixels in the person bounding box. These experiments on
MPI-INF-3DHP use background augmentation and universal skeletons.
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6.7 Detailed Occlusion Experiments

Figure 6.12: Examples of random synthetic occlusions over an MPI-INF-3DHP test
example, used for robustness analysis. Each column shows two samples with objects
from Pascal VOC, black circles, white oriented bars and a randomly-colored rectangle,
respectively.

Occlusion
augmentation

Human3.6M MPI-INF-3DHP

PCK↑ AUC↑ MPJPE↓ PCK↑ AUC↑ MPJPE↓
None 89.5 54.3 76.0 85.4 54.7 85.8
Rect-Noise 93.4 59.2 65.8 87.9 57.3 77.9
Rect-Texture 94.1 59.8 64.2 85.6 55.3 84.6
Obj-Noise 93.2 57.7 68.2 85.4 55.1 86.4
Obj-Texture 94.6 59.8 64.0 85.4 55.2 87.6

Table 6.8: Occluder Shape vs. Filling. We analyze how the augmenting occluder’s
shape and filling affects accuracy on 3D pose estimation benchmarks. PCK and AUC
are thresholded at standard 150 mm. 3DHP experiments here also use background
augmentation. Training was performed only on the respective dataset.

in 3DHP and that we already use background augmentation on 3DHP, which already
injects additional appearance variation.

6.7.4 Distribution of Occluded Pixel Ratio
It is important to make sure that the two occlusion augmentation shapes (object and
rectange) cover a similar number of pixels in the input image. This way we can isolate
the effect of occluder shape, not size, when comparing augmentation results. We follow
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Figure 6.13: Probability density of the occluded pixel ratio for the two random shapes
we use for occlusion augmentation. The curves were obtained by simulation and
Gaussian smoothing. This verifies that the differences in results do not stem merely
from different amount of pixels being occluded with the different augmentation
methdos.

the pseudocode by Zhong et al. (2020) for generating the rectangle shaped occluder.
We configure the Pascal VOC object occlusion generation such that the occluded pixel
ratio within the image has similar distribution to the rectangle’s: The number of objects
pasted is uniformly picked between 1 and 8, and each object is scaled by a uniformly
distributed factor between 0.1 and 0.5 compared to their original size in the Pascal
VOC dataset.

Random erasing’s rectangle occludes 11.6% of pixels on average, with a standard
deviation of 8.9 percentage points. Our Pascal VOC object augmentation has mean
11.1% and st. dev. 8.8 percentage points. Both skew towards small occlusion ratio. See
Figure 6.13 to compare density plots.

6.7.5 2D In-The-Wild Occlusion Experiment
Recall that our original motivation in detailed investigation of occlusion augmentations
was the limited appearance variation in current 3D pose datasets that are recorded
in motion capture studios. To test whether this type of augmentation holds broader
relevance in pose estimation than simply making up for a lack of appearance variation,
we set out to apply the same augmentations to the much more varied, in-the-wild
MPII 2D human pose dataset and evaluate the change in 2D human pose estimation
accuracy.

Our baseline network for this experiment is a simplified variant of Nibali et al.
(2018): a ResNet-50V2 backbone predicts 2D body joint heatmaps of size 8×8 which are
decoded using soft-argmax and the ℓ1 loss is minimized on the resulting coordinates.
The results are shown in Table 6.9. We observe that even when applied to this in-the-
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Head Shoulder Elbow Wrist Hip Knee Ankle All↑
No occl. aug. 93.4 92.7 85.2 78.7 85.7 81.1 75.5 85.3
Rect-Noise 94.2 93.5 86.2 78.9 86.9 81.2 75.4 85.8
Rect-Texture 93.8 93.5 86.2 79.3 87.1 81.9 76.4 86.1
Obj-Noise 93.7 93.3 85.7 78.9 86.6 81.0 76.3 85.7
Obj-Texture 94.3 93.4 86.3 79.6 86.7 82.8 77.1 86.3

Table 6.9: PCKh@0.5 (%) comparison of different occlusions augmentation schemes on
the MPII validation set. For reference, performance with Obj-Texture augmentation on
the official, held-out MPII test set is 87.6%.

Head Shoulder Elbow Wrist Hip Knee Ankle All↑
No occl. aug. 95.8 91.8 82.7 77.2 92.3 90.3 86.3 88.2
Rect-Noise 95.7 92.1 84.1 77.8 93.1 90.8 86.5 88.7
Obj-Texture 97.1 91.9 84.5 78.6 93.3 91.0 87.0 89.1

Table 6.10: PCK@0.2 (%) comparison on the LSP test set.

wild dataset, all four combinations of occluder shape and filling bring improvements
and Obj-Texture performs best. Similar results are achieved on the LSP (Table 6.10)
and FLIC (Table 6.11) datasets, where we compare Rect-Noise with Obj-Texture.

6.8 Detailed Ablations
We report more ablations to evaluate trade-offs and justify design choices in our
MeTRo model. We focus on the recently introduced and more challenging MPI-INF-
3DHP dataset, as it has been less studied in the past. The starting point for all these
experiments is the configuration with background and Rect-Noise (i.e., random erasing;
Zhong et al., 2020) augmentation and MPII-pretraining, but no weak 2D supervision.
This is referred to as the default configuration or default experiment from here on. We
indicate the default setting with italics in all tables.

6.8.1 Repeatability
As usual in deep learning, our training procedure is stochastic due to random aug-
mentations, training set shuffling and initialization. So that we can better interpret the
ablation results, in Table 6.12, we quantify the stochasticity of the training process by
rerunning the default experiment four more times on MPI-INF-3DHP from the same
MPII-pretrained weights and also using a new pretraining each time. The obtained
mean is used for further comparisons.
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Wrist PCK↑
No occl. aug. 96.3
Rect-Noise 96.5
Obj-Texture 97.2

Table 6.11: PCK@0.2 (%) comparison on the FLIC test set. Today, FLIC counts as a
relatively simple dataset, hence we focus on the most difficult joint, the wrist in this
ablation.

Same MPII pretraining Randomized MPII pretraining

PCK↑ AUC↑ MPJPE↓ PCK↑ AUC↑ MPJPE↓
88.9 58.6 73.9 88.9 58.6 73.9
89.1 58.6 74.2 89.2 58.6 73.2
89.4 58.9 73.0 89.4 58.6 73.1
88.8 58.4 75.8 88.7 58.2 74.7
89.3 58.7 73.0 89.3 58.3 74.0

Mean 89.1 58.6 74.0 89.1 58.5 73.8
St. deviation 0.25 0.16 1.05 0.27 0.15 0.60
Coeff. of var. (%) 0.28 0.27 1.42 0.30 0.27 0.81

Table 6.12: Repeatability study on MPI-INF-3DHP for our default configuration as
described in Section 6.8.

6.8.2 Backbone Size
By using a more powerful backbone, one can trade off computational complexity for
higher accuracy. For our main experiments, we use ResNet-50V2 for practical reasons.
In Table 6.13, we can see the results for two larger backbones that further improve
results. Speed is evaluated in terms of frames processed per second (fps), taking
into account minibatching with size 32 during training and 8 during testing. The
experiment was run on a single Nvidia TitanX (Pascal) GPU.

6.8.3 Procrustes Analysis and Multi-Crop Evaluation
In Table 6.14, we compare our results with a top-performing concurrent work on
MPI-INF-3DHP called MargiPose by Nibali et al. (2019). Nibali et al. use background
and clothing augmentation. We include results with background augmentation and
either with or without random-erasing occlusion augmentation.

We also compare under the multi-crop test-time augmentation (TTA) protocol of
Luvizon et al. (2018) and Nibali et al. (2019) in Table 6.14, as this enables direct com-
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Backbone PCK↑ AUC↑ MPJPE↓ Train fps↑ Test fps↑ #Params↓
ResNet-50V2 89.1 58.6 74.0 126* 250 24M
ResNet-101V2 90.0 59.5 71.6 78 168 43M
ResNet-152V2 90.5 59.9 69.8 60 124 58M

Table 6.13: Comparison of performance on MPI-INF-3DHP with different backbones
from the ResNetV2 family. * indicates that CPU-based image preprocessing becomes
the bottleneck.

Method Without Procrustes With Procrustes
PCK↑ AUC↑ MPJPE↓ PCK↑ AUC↑ MPJPE↓

Single-crop
Nibali et al. (2019) 87.6 48.8 87.6 94.8 61.4 61.6
Ours (default) 89.1 58.6 74.0 92.9 63.2 61.5
Ours (no occl. aug.) 87.2 57.1 79.7 91.5 61.4 66.1

Multi-crop
Nibali et al. (2019) 88.3 49.6 85.2 95.1 62.2 60.1
Ours (default) 89.9 59.7 70.8 93.3 64.6 58.8
Ours (no occl. aug.) 87.8 58.0 76.7 91.9 62.5 63.8

Table 6.14: Evaluation with and without Procrustes alignment and multi-crop evalua-
tion on MPI-INF-3DHP universal skeletons.

parison. Despite the fact that Nibali et al. use a multi-stage, custom architecture with
intermediate supervision, our method with just a ResNet-50V2 backbone outperforms
their approach on several metrics and is competitive on the others. Our method
compares especially well when no Procrustes alignment is used, i.e., when scale
recovery is necessary.

6.8.4 Initialization and Pretraining
Table 6.15 shows results obtained with different initializations. As expected, the more
data we use to pretrain the network, the better the accuracy.

6.8.5 Multi-Dataset Training
We report multi-dataset experiments in Table 6.16. When jointly training, we follow
Zhou et al. (2017) in adjusting the pelvis and hips to be more compatible across datasets:
we move these joints of MPI-INF-3DHP skeletons towards the neck by a fifth of the
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Initialization / Pretraining PCK↑ AUC↑ MPJPE↓
Random (He) initialization 76.9 46.7 112.8
ImageNet 87.9 57.3 77.9
MPII (without ImageNet) 85.5 54.3 85.4
ImageNet + MPII 89.1 58.6 74.0
ImageNet + MPII + Human3.6M 89.6 59.3 73.0

Table 6.15: Evaluation under different weight initialization and pretraining methods
on MPI-INF-3DHP. Results get better as more data is seen in pretraining.

Test dataset

Training Human3.6M MPI-INF-3DHP
PCK↑ AUC↑ MPJPE↓ PCK↑ AUC↑ MPJPE↓

Metric skeletons
Dataset-specific 95.5 61.5 60.8 87.8 52.3 85.0
Jointly trained 96.4 63.5 57.2 90.1 53.4 79.9

Universal skeletons
Dataset-specific – – – 89.1 58.6 74.0
Pretrained on the other – – – 89.6 59.3 73.0
Jointly trained – – – 91.3 59.0 70.2

Table 6.16: Joint Two-Dataset Training. We obtain improved results by training a
single model on both MPI-INF-3DHP and Human3.6M. While pretraining on another
dataset also helps, joint training is more effective. (We perform the universal-skeleton
experiments on 3DHP only, as common in the literature.)

neck–pelvis vector. In this case background augmentation is also used on Human3.6M
to treat the datasets consistently.

We find that jointly training on both MPI-INF-3DHP and Human3.6M results in a
single model that has superior performance on both test sets simultaneously, compared
to training dataset–specific models or mere pretraining. This becomes an important
motivation for further pursuing joint multi-dataset training in Section 7.6 on page 113
and Chapter 8.

6.8.6 Skeleton Normalization
Our main results presented for MPI-INF-3DHP were obtained on the universal (i.e.,
height-normalized) skeletons to remain comparable to prior work. However, our
metric 3D heatmap formulation does not require such normalization and can also be
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Training
skeletons

Test PCK on metric skeletons

Green Screen No Green Screen Outdoor Total↑
Universal 90.6 85.1 82.3 86.5
Metric 92.5 86.4 82.4 87.8

Table 6.17: Analysis of the method’s ability to learn scale recovery when trained on
actual, raw skeletons. Good performance on the actual skeletons requires implicit scale
estimation by the backbone.

Training epochs PCK↑ AUC↑ MPJPE↓
30 89.1 58.6 74.0
60 89.0 58.8 74.7

Table 6.18: Training Length. We verify that 30 epochs are sufficient to train the model.

trained on the actual (non-normalized, non-universal) skeletons by simply using those
as the target labels during training.

An interesting question is whether training on actual skeletons helps the model
learn scale recovery or whether it silently “ignores” the person scale information and
simply learns what can already be learned from universal skeletons. Table 6.17 shows
that training on actual skeletons does result in improved scale recovery (total PCK
increases from 86.5% to 87.8% by 1.3 points). This works best (+1.9 PCK points) on
the green-screen studio test examples (same scene as in training), since the network
can relate the test person’s size to cues in the known background. Scale recovery is
less successful when the green screen is removed in the studio (+1.3 points), and the
advantage essentially disappears when testing in the outdoor setting (+0.1 points). We
hypothesize that learning scale recovery that generalizes to unknown scenes would
require observing more people with various heights during training.

6.8.7 Training Length

To make sure that we have trained our models for long enough, we show that doubling
the training length does not result in further significant improvement. Recall that our
learning rate schedule is exponential decay from 10−4 to 10−5 over 30 epochs and 1
epoch with 10−6. In Table 6.18 we show that extending the exponential decay phase
from 30 to 60 epochs gives no further benefit and the numbers remain within one
standard deviation of the repeatability study shown in Table 6.12 on page 96.
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6 MeTRo: A Metric-Scale Truncation-Robust Heatmap Representation

Heatmap res. PCK↑ AUC↑ MPJPE↓ Train fps↑ Test fps↑
8×8×8 87.9 57.2 78.5 126* 303

16×16×16 89.1 58.6 74.0 126* 250
32×32×32 89.4 59.3 72.3 43 117

Reduced depth resolution
8×8×4 89.0 57.8 75.0 126* 305

16×16×4 89.0 58.2 74.8 126* 250
32×32×4 89.8 59.3 71.7 48 120

Table 6.19: Impact of Heatmap Resolution. Higher spatial resolution in the heatmaps
yields better performance but coarse depth is also sufficient. * indicates that our
CPU-based image preprocessing becomes the bottleneck.

Volume side length PCK↑ AUC↑ MPJPE↓
1800 mm 89.3 58.7 73.6
2000 mm 89.3 58.6 73.4
2200 mm 89.1 58.6 74.0
2400 mm 89.0 58.6 74.3

Table 6.20: Impact of Volume Size. Results as the metric volume size is varied show
little sensitivity to this hyperparameter.

6.8.8 3D Heatmap Resolution

A computational cost vs. accuracy tradeoff exists in the choice of the heatmap resolution.
As shown in Table 6.19, increasing spatial resolution in the X and Y axes improves
results (slightly). However, the resolution along the depth axis can be decreased to as
low as 4 with good performance.

6.8.9 Metric Size of the Volume

We chose 2200 mm as the metric side length of the volume represented by the
3D heatmap predicted by the backbone, so that all training skeletons fit inside
with some margin. Table 6.20 shows that the results are not very sensitive to this
hyperparameter.
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6.9 Conclusion
We proposed metric-scale truncation-robust (MeTRo) volumetric heatmaps in the con-
text of 3D human pose estimation. These heatmaps directly represent the metric space
around the person instead of being tied to the image space and can be predicted with
any standard fully convolutional network. With a modified weak supervision scheme
for 2D labels, careful stride alignment considerations and strong data augmentation,
we achieved state-of-the-art results on two important benchmarks: Human3.6M and
MPI-INF-3DHP. In carefully controlled experiments, we showed that our approach
can implicitly discover scale cues from the data and outperforms a previously proposed
explicit bone length–based heuristic on all test scenarios except the two outdoor se-
quences of MPI-INF-3DHP. Future research should consider possibilities for learning
similar scale cues from large-scale outdoor data as well. We also performed a detailed
analysis of occlusion augmentation and robustness in conjunction with the MeTRo
method, as well as detailed ablations and hyperparameter studies. Another interesting
future direction can be the evaluation on people with widely differing heights, if such
data becomes available on a large scale. Beyond scale recovery, we demonstrated
the second benefit of the MeTRo representation, the prediction (“hallucination”) of
complete skeletons even when only a part of the body is contained in the image. Given
its speed and robustness to detection noise, we expect our approach to be useful in
designing top-down multi-person pose estimation systems in the future.
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7
MeTRAbs: An End-to-End Learned

Absolute 3D Pose Estimator

In this chapter, we apply the MeTRo heatmap concept introduced in Chapter 6 to the
task of absolute (i.e., non-root-relative) 3D human pose estimation.

Absolute pose estimation is especially important in multi-person scenarios, in order
to recover the spatial layout of the whole group. We therefore turn to the multi-person
setting in this chapter, after having focused on single-person estimation in the previous
chapters. For this, we use the top-down multi-person paradigm, first running detection
then pose estimation for each person.

State-of-the-art results of the MuPoTS-3D benchmark, as well as achieving first place
in the 3D Poses in the Wild competition at ECCV 2020 demonstrate the effectiveness of
our approach.

This chapter is based on our journal article Sárándi et al. (2021), published in the IEEE
Transactions on Biometrics, Behavior, and Identity Science (©2021 IEEE, with permission).
As additional content, we include performance measurements on embedded hardware
using more efficient backbone networks, showing that our method is real-time capable
on low-powered hardware as well.

7.1 Overview

Most of the 3D human pose estimation literature is concerned with the so-called
root-relative version of this task. This means that each body joint’s position is estimated
relative to the person’s center joint, i.e., the pose is only recovered up to translation
and the position of the root joint relative to the camera is not estimated. This may
be sufficient for applications such as gesture and action recognition, but for a robot
navigating in a crowd, it is important to know where each person is located in the
absolute 3D space, e.g., for pathfinding.
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7 MeTRAbs: An End-to-End Learned Absolute 3D Pose Estimator

To obtain absolute predictions, we combine 3D metric-scale root-relative heatmaps
and 2D image-space heatmaps in a two-headed CNN architecture, and subsequently
reconstruct the absolute 3D root position in a differentiable manner. We evaluate our
network in a top-down fashion combined with an off-the-shelf person detector and
refer to this combined approach as MeTRAbs. While prior approaches have tackled
the root reconstruction problem, to our knowledge we are the first to backpropagate
gradients through this type of reconstruction, allowing us to end-to-end supervise
the absolute pose task. We show that this is crucial for good distance estimation, and
extensively evaluate strong and weak perspective–based reconstruction variants.

Quantitatively, we achieve state-of-the-art results of the time on the popular multi-
person dataset MuPoTS-3D. Further demonstrating the effectiveness and scalability
of our approach, we achieve first place in the 2020 ECCV 3D Poses in the Wild (von
Marcard et al., 2018) Challenge using additional training data.

Similar to Chapter 6, we perform extensive comparisons with 2.5D heatmap learning
using bone length–based scale recovery (Pavlakos et al., 2017), under otherwise equal
training conditions and find that our end-to-end formulation is more effective in this
task.

We release our code publicly to enable further followup research.1

7.2 Related Work
Most monocular 3D pose estimation methods have typically only been evaluated
in a root-relative manner. However, some recent works have also explicitly tackled
the absolute (non-root-relative) pose estimation task, where every joint position is
predicted within the 3D camera coordinate frame. This is closely related to metric-scale
prediction discussed at length in the previous chapter: if both the image-space pose
and the metric-scale root-relative pose are known, one can reconstruct the absolute
distance (assuming a calibrated camera).

Mehta et al. (2017a) and Dabral et al. (2019) reconstruct the root offset by assuming
a weak perspective model. Mehta et al. (2019) assume the foot touches the known
ground plane in the first frame. Moon et al. (2019) predict the metric area of the human
bounding box as a numerical value via a separate deep network (RootNet), besides
their root-relative 2.5D PoseNet. In contrast to Moon et al., we estimate the scaled
pose fully convolutionally and do not require multiple separate backbones. In our
earlier work Sárándi et al. (2018b) (described in Chapter 5), we estimated the distance
directly from the image crop, however that approach does not generalize well to novel
environments. Dabral et al. (2019) propose to estimate the focal length jointly with the
distance, implicitly relying on the perspective distortion of people far from the optical
axis. As the authors note, this cannot work well when the camera is turned directly

1https://vision.rwth-aachen.de/metrabs
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7.3 Method

towards the target person. Véges and Lőrincz (2019) make use of a monocular depth
prediction network pretrained on various indoor and outdoor datasets to help with
absolute person distance estimation.

In video estimation with known frame rate, Bieler et al. (2019) used gravitational
acceleration as a scale reference.

Finally, some recent works also consider the depth relations among people: Jiang
et al. (2020) optimize the depth ordering by occlusion cues, while Fieraru et al. (2020)
explicitly localize contact points between people to help with coherent reconstruction.
In contrast, we perform our estimation for each person independently.

7.3 Method

In this section, we describe MeTRAbs, consisting in a combination of MeTRo 3D
heatmap estimation (presented in Chapter 6) with traditional 2D pose heatmaps in
a single end-to-end trained network for absolute 3D pose estimation, as shown in
Figure 7.1. The overall idea is that the MeTRo approach implicitly estimates the
scale, which we can then use to infer the distance. By applying this method within
a top-down paradigm (detection, cropping, pose estimation), we obtain a fast and
accurate way to tackle multi-person absolute 3D pose estimation.

As discussed in Chapter 6, we first estimate a complete metric-scale pose{
(∆Xj,∆Yj,∆Zj)

T
}J
j=1

up to translation (where J is the number of joints).

By additionally estimating the 2D, image-space pose
{
[xj, yj]

T
}J

j=1
, we obtain all

the necessary information to recover the absolute 3D pose in the (calibrated) camera
coordinate system, as we will see in the following. We assume known camera intrinsics,
since monocular focal length estimation (Kar et al., 2015; Workman et al., 2015) is a
very challenging task (cf. the “dolly zoom” effect; Liang et al., 2020).

The absolute pose can be expressed as{
[X0 +∆Xj, Y0 +∆Yj, Z0 +∆Zj]

T
}J

j=1
, (7.1)

with [X0, Y0, Z0]
T being the absolute pose offset, which we aim to recover. For this, we

first calculate the normalized image coordinates as [x̃j, ỹj]
T = K−1[xj, yj]

T , where K is
the intrinsic matrix.

Mehta et al. (2017a) derive a formula to reconstruct the absolute root position
using the weak perspective projection model. Véges and Lőrincz (2019), while still
operating in the weak perspective model, note that an approximation step involved in
Mehta et al.’s algorithm leads to worse performance. Motivated by this, we derive a
reconstruction method under the full perspective pinhole camera model and extensively
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Figure 7.1: MeTRAbs Architecture. We predict two types of body joint heatmaps with a standard fully convolutional
backbone: metric-scale truncation-robust 3D heatmaps (as defined in Chapter 6), as well as pixel-space 2D heatmaps.
We decode the heatmaps to coordinates via soft-argmax. Intermediate ℓ1 losses are applied on these decoded 2D
and root-relative 3D poses. Finally, we reconstruct the absolute pose through a differentiable linear-least-squares
optimization module derived from the pinhole camera model. Importantly, supervision is also applied on this
final combined output, and its gradients are backpropagated all the way to the backbone, resulting in end-to-end
optimized absolute pose prediction. (∗For 2D-labeled examples, the root-relative loss is replaced by a scale and
translation-invariant 2D loss and the absolute 3D loss is not used.)
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compare it with Mehta et al.’s weak perspective method. In a full perspective model, a
perfect estimate would satisfy[

x̃j

ỹj

]
=

[
(X0 +∆Xj)/(Z0 +∆Zj)
(Y0 +∆Yj)/(Z0 +∆Zj)

]
, (7.2)

which can be rearranged to[
X0 − x̃jZ0

Y0 − ỹjZ0

]
=

[
x̃j∆Zj −∆Xj

ỹj∆Zj −∆Yj

]
. (7.3)

Considering all joints, we obtain 2J linear equations in the three variables (X0, Y0, Z0).
Since x̃, ỹ, X, Y and Z are estimates, the equation system is noisy and over-determined.
Hence we opt to solve it by linear least squares, with a differentiable solver based on
Cholesky decomposition. This differentiability allows us to directly supervise the
network with a loss Labs3D computed on the final absolute 3D pose output, which turns
out to be crucial for accurate distance estimation.

For truncated images, (7.2) only holds for body joints inside the image frame, since
the 2D heatmap method cannot estimate out-of-image joint locations. We therefore
exclude from the optimization any joint that is predicted to lie closer to the image
border than one stride length. After reconstructing the root joint position, we can obtain
the absolute pose in two ways. Either as [∆Xj +X0,∆Yj + Y0,∆Zj + Z0]

T (adding the
reconstructed offset to the 3D head’s root-relative output), or as [x̃j, ỹj, 1]

T · (∆Zj + Z0)
(back-projecting the 2D head’s output). For joints that lie within the image, we use
the latter option, while for truncated ones we use the former. Both the individual
prediction heads and the final absolute output are supervised with the ℓ1 loss. As in
the root-relative MeTRo network, we apply weak supervision from 2D-labeled data for
MeTRAbs as well, on both heads. Extending (6.2) on page 79, the loss becomes

L =Labs3D
ann3D + Lhead3D

ann3D + Lhead2D
ann3D + λ

(
Lhead2D

ann2D + Lhead3D
ann2D

)
, (7.4)

where we again set λ = 0.1.

We found that the absolute loss can introduce numerical instabilities very early
during training, since at this point the two prediction heads do not yet produce
sufficiently compatible outputs, making the reconstruction problem ill-conditioned.
Hence, we only turn on the absolute loss after 5000 update steps.

In a multi-person scenario, inference speed becomes a priority, since the model is
evaluated on each person detection separately. To retain real-time performance, we
do not apply dense prediction with MeTRAbs; the network is trained and tested with
coarse, 8×8×8 heatmaps.
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7 MeTRAbs: An End-to-End Learned Absolute 3D Pose Estimator

7.4 Experimental Setup

7.4.1 Data

We evaluate our method in a multi-person context by training on MuCo-3DHP and
testing on MuPoTS-3D.

MuCo-3DHP (Mehta et al., 2018) is a synthetically composited multi-person dataset,
derived from 3DHP by pasting persons over each other based on their root joint depth
order. As Véges and Lőrincz (2019), we generate 150k training images, each with 4
people. We run YOLOv3 on these images to get realistic bounding boxes.

MuPoTS-3D (Mehta et al., 2018) is a mixed indoor and outdoor multi-person test set,
compatible with MuCo-3DHP, consisting of 20 sequences showing people performing
various actions and interactions. MuPoTS-3D provides normalized and unnormalized
skeletons. Indoor sequences are gamma-corrected with an exponent of 0.67.

We use the same preprocessing and augmentation configuration as in Chapter 6,
with the only difference that synthetic occlusion probability is reduced to 30% since
some occlusion is already introduced from compositing person segments over each
other.

Since we are studying the multi-person setting here, we use all person instances from
the 2D MPII dataset and obtain realistic bounding boxes for them with YOLOv3 (Red-
mon & Farhadi, 2018).

7.4.2 Evaluation

We use the standard evaluation metrics, which we defined in Section 3.4 on page 38.
The main one on MuPoTS-3D is the the percentage of correct keypoints (PCK) with
threshold 150 mm. The AUC is the area under the PCK curve as the threshold ranges
from 0 to 150 mm. The official MuPoTS-3D evaluation script rescales the bone lengths
of the prediction to match the ground-truth bone lengths before computing metrics,
leading to some confusion and inconsistency between reported results. In Mehta
et al. (2018) rescaling was only used for evaluating LCR-Net (Rogez et al., 2017), but
it has since been adopted by other authors as well. For consistency and simplicity,
we train MeTRAbs only with unnormalized skeletons. When evaluating on universal
(normalized) skeletons, we use bone rescaling. On unnormalized skeletons, we do not
use bone rescaling, in order to directly evaluate the raw metric-space outputs of the
methods. Note that bone rescaling to the ground truth can counter-intuitively lead to
worse scores due to error accumulation along the kinematic chain. For example, if the
estimated wrist position is correct but the elbow is wrong, bone rescaling can shift the
wrist prediction away and make it appear worse.
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7.5 Results

Figure 7.2: Qualitative results on MuPoTS-3D (prediction in blue-yellow, ground truth
in red).

Following Véges and Lőrincz (2020a), on MuPoTS-3D we also evaluate absolute (i.e.,
non-root-relative) metrics, prefixed with “A-,” e.g., A-PCK. For absolute MPJPE, Véges
and Lőrincz (2019, 2020a) evaluate all 17 joints, and for relative MPJPE only 16 (no
pelvis), and use the 14 MPII joints for PCK and A-PCK. By default we use 14 joints on
MuPoTS-3D, except when marked otherwise in the tables.

7.5 Results
On MuPoTS-3D, our approach yields state-of-the-art results. For height-normalized
skeletons with bone rescaling (standard setting in prior work, Tables 7.1 and 7.2 on
the next page and on page 111), MeTRAbs outperforms the 2.5D baseline, and the
baseline already reaches state-of-the-art results. Our method performs particularly
well on test sequence 2, with heavy occlusions (e.g., Figure 7.2, left). Removing the
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S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20 Avg↑

Root-relative PCK for all annotated poses
Rogez et al. (2017) 67.7 49.8 53.4 59.1 67.5 22.8 43.7 49.9 31.1 78.1 50.2 51.0 51.6 49.3 56.2 66.5 65.2 62.9 66.1 59.1 53.8
Mehta et al. (2018) 81.0 60.9 64.4 63.0 69.1 30.3 65.0 59.6 64.1 83.9 68.0 68.6 62.3 59.2 70.1 80.0 79.6 67.3 66.6 67.2 66.0
Rogez et al. (2019) 87.3 61.9 67.9 74.6 78.8 48.9 58.3 59.7 78.1 89.5 69.2 73.8 66.2 56.0 74.1 82.1 78.1 72.6 73.1 61.0 70.6
Moon et al. (2019) 94.4 77.5 79.0 81.9 85.3 72.8 81.9 75.7 90.2 90.4 79.2 79.9 75.1 72.7 81.1 89.9 89.6 81.8 81.7 76.2 81.8
Dabral et al. (2019) 85.1 67.9 73.5 76.2 74.9 52.5 65.7 63.6 56.3 77.8 76.4 70.1 65.3 51.7 69.5 87.0 82.1 80.3 78.5 70.7 71.3
Véges and Lőrincz
(2020a) 89.5 75.9 85.2 83.9 85.0 73.4 83.6 58.7 65.1 90.4 76.8 81.9 67.0 55.9 80.8 90.6 90.0 81.1 81.1 68.6 78.2

Mehta et al. (2019) 89.7 65.4 67.8 73.3 77.4 47.8 67.4 63.1 78.1 85.1 75.6 73.1 65.0 59.2 74.1 84.6 87.8 73.0 78.1 71.2 72.1
Benzine et al. (2021) 78.1 62.5 55.5 63.8 70.2 50.8 73.8 65.3 55.1 79.3 70.4 72.3 65.4 55.3 65.2 81.3 77.2 75.9 74.2 71.6 67.5

2.5D baseline 93.0 76.4 88.6 85.2 86.3 75.7 84.3 67.9 84.3 93.4 81.6 89.8 77.3 67.7 83.8 91.0 86.1 84.8 77.1 71.2 82.3±0.1
MeTRAbs 93.8 80.8 89.3 87.0 86.6 74.5 83.7 66.2 85.0 92.9 80.4 89.6 77.1 68.7 86.3 92.0 86.6 84.4 77.3 71.4 82.7±0.3

w/o abs. loss 94.0 82.6 88.4 86.5 87.3 76.2 85.9 66.9 85.8 92.9 81.8 89.9 77.6 68.5 85.6 92.3 89.3 85.1 78.2 71.6 83.3±0.2

Root-relative PCK for detected poses
Rogez et al. (2017) 69.1 67.3 54.6 61.7 74.5 25.2 48.4 63.3 69.0 78.1 53.8 52.2 60.5 60.9 59.1 70.5 76.0 70.0 77.1 81.4 62.4
Mehta et al. (2018) 81.0 65.3 64.6 63.9 75.0 30.3 65.1 61.1 64.1 83.9 72.4 69.9 71.0 72.9 71.3 83.6 79.6 73.5 78.9 90.9 70.8
Rogez et al. (2019) 88.0 73.3 67.9 74.6 81.8 50.1 60.6 60.8 78.2 89.5 70.8 74.4 72.8 64.5 74.2 84.9 85.2 78.4 75.8 74.4 74.0
Moon et al. (2019) 94.4 78.6 79.0 82.1 86.6 72.8 81.9 75.8 90.2 90.4 79.4 79.9 75.3 81.0 81.0 90.7 89.6 83.1 81.7 77.3 82.5
Dabral et al. (2019) 85.8 73.6 61.1 55.7 77.9 53.3 75.1 65.5 54.2 81.3 82.2 71.0 70.1 67.7 69.9 90.5 85.7 86.3 85.0 91.4 74.2
Véges and Lőrincz
(2020a) 89.5 81.6 85.9 84.4 90.5 73.5 85.5 68.9 65.1 90.4 79.1 82.6 72.7 68.1 81.0 94.0 90.4 87.4 90.4 92.6 82.7

Mehta et al. (2019) 89.7 78.6 68.4 74.3 83.7 47.9 67.4 75.4 78.1 85.1 78.7 73.8 73.9 77.9 74.8 87.1 88.3 79.5 88.3 97.5 78.0
Benzine et al. (2021) 78.3 75.0 56.9 64.1 76.1 51.3 74.7 79.1 55.2 79.3 74.5 74.5 70.2 69.5 67.6 85.7 82.6 78.7 79.1 89.6 72.7

2.5D baseline 93.0 80.1 89.2 85.8 90.1 76.9 88.6 75.6 84.3 93.4 85.9 90.6 83.4 80.9 83.8 93.0 86.6 89.3 85.0 90.8 86.3±0.1
MeTRAbs 93.8 84.4 90.0 87.6 90.5 75.7 88.1 74.9 85.0 92.9 84.7 90.4 83.3 82.2 86.3 93.9 87.1 88.9 85.2 91.3 86.8±0.4

w/o abs. loss 94.0 86.5 89.0 87.1 91.1 77.4 90.2 75.7 85.8 92.9 86.0 90.7 83.8 82.0 85.6 94.3 89.8 89.6 86.5 91.7 87.5±0.2

Table 7.1: Root-relative pose comparison to prior work on the MuPoTS-3D benchmark for normalized skeletons with
bone rescaling to the ground truth before computing the percentage of correct keypoints (PCK). (For the direct
evaluation of the metric-space poses, see Table 7.3 on page 112).
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7.5
Results

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20 Avg↑

Absolute PCK for all annotated poses
Moon et al. (2019) 59.5 44.7 51.4 46.0 52.2 27.4 23.7 26.4 39.1 23.6 18.3 14.9 38.2 26.5 36.8 23.4 14.4 19.7 18.8 25.1 31.5
Benzine et al. (2021) 22.2 18.1 16.1 18.5 20.4 14.7 21.2 18.9 16.0 22.9 20.3 20.9 18.9 16.0 18.9 23.5 22.3 21.8 21.5 20.8 19.8
Véges and Lőrincz
(2020a) 50.4 33.4 52.8 27.5 53.7 31.4 22.6 33.5 38.3 56.5 24.4 35.5 45.5 34.9 49.3 23.2 32.0 30.7 26.3 43.8 37.3

2.5D baseline 77.6 50.5 58.6 40.3 74.6 21.9 7.3 27.0 22.4 38.6 32.2 37.6 25.2 43.9 50.4 35.0 25.5 41.1 31.9 27.8 38.5±0.9

MeTRAbs 21.2 21.1 45.5 48.2 40.9 34.9 33.0 51.5 34.9 85.6 18.0 36.7 50.3 53.1 54.3 28.1 28.8 26.8 20.0 35.1 38.4±1.9

w/o abs. loss 48.9 32.9 15.3 18.9 48.7 11.8 19.1 42.3 28.9 78.4 27.5 60.6 38.6 42.8 43.1 28.4 28.7 28.6 23.3 33.8 35.0±3.1

Absolute PCK for detected poses
Moon et al. (2019) 59.5 45.3 51.4 46.2 53.0 27.4 23.7 26.4 39.1 23.6 18.3 14.9 38.2 29.5 36.8 23.6 14.4 20.0 18.8 25.4 31.8
Benzine et al. (2021) 22.7 21.2 17.1 18.6 22.0 14.8 21.5 22.9 16.0 22.9 21.5 21.6 20.3 20.0 19.4 18.9 23.8 22.6 22.9 25.8 20.9
Véges and Lőrincz
(2020a) 50.4 35.9 53.3 27.7 57.2 31.4 23.1 39.3 38.3 56.5 25.2 35.8 49.3 42.5 49.4 24.1 32.1 33.1 29.3 59.2 39.6

2.5D baseline 77.6 53.0 59.1 40.5 77.9 22.2 7.6 30.1 22.4 38.6 33.9 37.9 27.2 52.4 50.4 35.8 25.7 43.3 35.2 35.5 40.3±1.0

MeTRAbs 21.2 22.1 45.8 48.5 42.8 35.4 34.8 58.3 34.9 85.6 19.0 37.0 54.3 63.6 54.3 28.8 29.0 28.2 22.0 44.9 40.5±1.9

w/o abs. loss 48.9 34.5 15.5 19.0 50.8 12.0 20.1 48.0 28.9 78.4 29.0 61.1 41.7 51.2 43.1 29.0 28.8 30.1 25.8 43.3 36.9±3.1

Table 7.2: Absolute pose comparison to prior work on the MuPoTS-3D benchmark for normalized skeletons with
bone rescaling to the ground truth before computing the percentage of correct keypoints (PCK). (For the direct
evaluation of the metric-space poses, see Table 7.3).
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A-MPJPE↓ MPJPE↓ A-PCK↑ PCK↑ Det.Rate↑
Rogez et al. (2017) – 146‡ – – 86
Mehta et al. (2018) – 132‡ – – 93
Baseline in

Véges and Lőrincz (2019)
320† 122‡ – – 91

Véges and Lőrincz (2019) 292† 120‡ – – 91
Véges and Lőrincz (2020a)∗ 257.2 (255†) 119.4 (108‡) 38.1 75.4 93

2.5D baseline 317.6 (313.6†) 114.0 (110.0‡) 40.0±1.0 79.3±0.3 94.2±0.0
MeTRAbs 248.2 (246.9†) 108.2 (104.3‡) 40.2±1.9 81.1±0.4 94.1±0.1

w/o abs. loss 328.8 (327.8†) 108.4 (104.7‡) 36.7±3.2 80.9±0.4 94.1±0.1

Table 7.3: Results on MuPoTS-3D. Detected, unnormalized poses, no bone rescaling.
(∗Re-evaluated public results; joint count: †17, ‡16, else 14)

Persp. assumption All annotations Matched annotations

Training Test A-PCK↑ PCK↑ A-PCK↑ PCK↑
F F 37.2±1.7 76.2±0.5 39.3±1.7 79.9±0.5
F W 39.4±1.6 76.2±0.5 41.6±1.6 80.0±0.5
W F 35.6±1.8 77.1±0.4 37.6±1.8 81.0±0.5
W W 38.1±1.8 77.2±0.4 40.2±1.9 81.1±0.4
– F 33.0±3.3 77.0±0.4 34.9±3.3 80.8±0.4
– W 34.8±3.1 77.0±0.4 36.7±3.2 80.9±0.4

Table 7.4: Comparison of weak (W) and full (F) perspective–based absolute pose
reconstruction. (Unnormalized skeletons, without bone rescaling.)

supervision with the absolute 3D loss worsens the absolute PCK of all poses from 38.4%
to 35.0%. Surprisingly, the root-relative accuracy seems to improve when turning
off the absolute loss. This is, however, hard to interpret, as Table 7.1 on page 110
shows an artificial evaluation setting with normalized-height skeletons and bone
rescaling, thereby removing some of the scale recovery aspect from the evaluation.
When evaluating on unnormalized skeletons without bone rescaling (Table 7.3), it
becomes clear that the absolute loss helps: absolute MPJPE improves from 328.8 mm
to 248.2 mm, absolute PCK from 36.7% to 40.2%, with the root-relative metrics slightly
improving as well. These are state-of-the-art results and improve over methods that
are pre- or jointly trained on ground-truth pixel-wise depth prediction datasets (Véges
& Lőrincz, 2019, 2020a). Further, we can see that the absolute PCK score has high
variance and therefore small differences are not necessarily meaningful. The standard
deviation across 5 repeat experiments is around 1.4–3.2%, and the absolute results
for individual test sequences varies strongly as well across different configurations.
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This is because the test examples are strongly correlated since they come from video
sequences. Lastly, we note that the detection rate is essentially the same for all of our
configurations (Table 7.3), since we use the same detections, and the official evaluation
script performs matching based on the 2D projection, which is very similar across
these methods.

In Table 7.4, we evaluate whether using the full perspective pinhole camera model
in the absolute pose reconstruction module brings benefits. In the last two rows, the
absolute loss is not used at training time. In the other cases we backpropagate the
absolute loss gradients either through the weak or full perspective reconstruction
method. We find that training on MuCo-3DHP with the full perspective model
improves the absolute results, but when testing on MuPoTS-3D, it is better to use
the weak model. This may be explained by the fact that people in the MuCo-3DHP
dataset are closer to the camera than in MuPoTS-3D, resulting in stronger perspective
effects in MuCo-3DHP. To verify this, we computed the ratio of the farthest and closest
joint’s depth maxj Zj/minj Zj per pose. If this ratio is large, the weak perspective
assumption is a bad approximation. The median and the 90th percentile of this ratio on
MuCo-3DHP is 1.22 and 1.41, while on MuPoTS-3D it is only 1.16 and 1.26, respectively.
This confirms that perspective effects are stronger in MuCo-3DHP.

Another possible reason is that the model may output slightly perspective distorted
results in the metric 3D head, which are better handled by the weak perspective model
in the next step, as opposed to training time, when the network learns to output the
correct metric, perspective-undistorted pose, for which the full perspective model
works better afterwards. Nevertheless, as there is no clear overall winner between the
weak and full perspective models, and changing the method across training and test is
clearly not desirable, we use the more commonly applied weak perspective method for
all other experiments.

7.5.1 Inference Speed
Our method is capable of real-time inference. By gathering all person instances of a
frame in a batch, MeTRAbs can process 128, 118, 98, 67, 41 frames per second for 1, 2,
4, 8 and 16 people per frame, respectively. The above calculations assume the image
crops are available instantly and the time cost of detection is excluded.

7.6 ECCV 2020 3DPW Challenge
Finally, we note that our MeTRAbs method has won the 3D Poses in the Wild (3DPW;
von Marcard et al., 2018) challenge, organized as a workshop event at the 2020
European Conference on Computer Vision. Table 7.5 compares results using the 3DPW
protocol. Having seen the effectiveness of multi-dataset training in Section 6.8.5 on
page 97, we train our network on a combination of the Human3.6M, MuCo-3DHP,
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7 MeTRAbs: An End-to-End Learned Absolute 3D Pose Estimator

MPJPE↓ P-MPJPE↓ PCK50↑ AUC200↑
Known association to ground-truth identity

Sun et al. (2020) 81.8 58.6 37.3 59.9
Kissos et al. (2020) 83.2 59.7 42.4 62.3
MeTRAbs (ours) 68.8 49.7 48.8 66.8

Unknown association to ground-truth identity
MeTRAbs (ours) 85.1 56.7 45.8 63.2

Table 7.5: Results on the 3DPW challenge dataset.

SURREAL (Varol et al., 2017), SAIL-VOS (Hu et al., 2019) and CMU-Panoptic (Joo et al.,
2019) datasets. We use ResNet-101V2 as the backbone, and additionally apply upper
body crop (truncation) augmentation at training time, as well as and 5-crop averaging
at test time. When identity tracking is needed, we perform frame-to-frame matching
based on absolute pose distance. The listed methods are not directly comparable due to
different training data. Even with this caveat, our top results show that our approach
can scale with further training data and performs well even in challenging in-the-wild
scenarios. This motivates us to scale multi-dataset training of MeTRAbs even further,
which we will discuss in the next chapter.

7.7 System Implementation and Embedded Evaluation

We perform detailed performance measurements on robot-compatible embedded
hardware, in the context of the Horizons 2020 project “CROWDBOT” funded by the
European Union (H2020-ICT-2017-779942), aimed at enabling robots to navigation
safely in dense crowds.2

Furthermore, a live demonstration of the system running on a laptop and a webcam
was presented in the Demo Track of the 2022 European Conference on Computer Vision
(ECCV). In Section 7.5 on page 109, we used the ResNet-50V2 as the backbone and in
Section 7.6 ResNet-101V2. The ResNet family is an extensively studied architecture and
is therefore ideal for good comparability with the related literature. However, newer
backbones have been proposed in recent years as we described in Section 3.1.3 on
page 30, and these have different speed–accuracy tradeoff characteristics as well as some
hardware-specific optimizations. Specifically, the recent EfficientNetV2 (Tan & Le, 2021)
is preferable in the high-accuracy regime, while the lightweight MobileNetV3 (Howard
et al., 2019) is better in the low-compute, high-speed regime.

2Some text passages that I wrote for the corresponding public technical report (CROWDBOT, 2021) are
included in this section.
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7.7 System Implementation and Embedded Evaluation

In the following, we present a detailed analysis of the speed–accuracy tradeoff with
respect to the following aspects. We concentrate on the pose estimation part here and
do not measure the time for person detection, cropping, etc.

Backbones. We use MobileNetV3-Small, MobileNetV3-Large, ResNet-50V2, and
EfficientNetV2-S (see Section 3.1.3 on page 30 for details on these architectures).

Test-Time Augmentation. The prediction quality can be significantly improved by
transforming the input image crop in multiple ways (rotation, mirroring, scaling,
gamma adjustment) and averaging the resulting predictions (after transforming the
individual predictions back to a common coordinate frame). Here we analyze such
test-time augmentation (TTA) with 1, 2, 3 and 5 crops.

Batching. Performing inference on multiple image crops at once improves throughput
due to the highly parallel computational architecture of GPUs. This can mean batching
multiple persons detected in a single frame, or batching over multiple frames. The
latter case introduces additional latency in the system. Here, we consider two extremes:
no batching and batching 64 crops.

Hardware. We perform measurements both on a high-end desktop GPU (Nvidia
GeForce RTX 3090) and an embedded edge computing device (Nvidia Jetson AGX
Xavier).

Estimation quality is measured on the 3DPW benchmark dataset according to the
PCK thresholded at 100 mm.

Results. Figure 7.3 shows the results. The different colors represent different
backbone networks. The line style indicates whether the GPU is used with batching
(batch size 64) or without batching (batch size 1). The points on each line represent
different amounts of test-time augmentation, going from bottom to top: 1, 2, 3 and
5 augmentations per crop. The horizontal axis shows logarithmic throughput. The
black vertical line shows 25 crops/s, the throughput needed for online processing
of standard video input with a single person. We make the following observations:
Test-time augmentation is highly effective (e.g., MobileNetV3-Large improves from
72.2% to 77.5% PCK@100 mm with 5-crop augmentation). Especially if we do not use
cross-frame batching, the overhead of test-time augmentation is small (there is idle
computational capacity otherwise).

Batching can increase throughput by more than an order of magnitude, hence the
batch size needs to be chosen as the highest possible value, according to latency require-
ments. EfficientNetV2-S has significantly higher accuracy than ResNet-50V2 with little
additional computational cost on the Jetson hardware. Interestingly, EfficientNetV2-S
is less efficient on the desktop: non-batched inference is faster on the Jetson than
on the RTX 3090. MobileNetV3-Small has too low accuracy to be a viable practical
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Figure 7.3: Throughput vs. accuracy. Performance evaluation on robot and desktop
hardware. (B) denotes batching 64 crops together for increased parallelization.

choice. MobileNetV3-Large is on the Pareto frontier in case of the Jetson, but is strictly
outperformed by ResNet-50V2 on the desktop.

Figure 7.4 shows Jetson timing measurements from a different perspective. Batching
is only performed within a single frame, i.e., the multiple people present in a single
frame are processed in parallel, but not across different frames, in order to evaluate
inference speed at minimum latency. Solid lines show inference without test-time
augmentation, dashed lines use 3-crop augmentation. 25 frames per second (a common
video frame rate) is highlighted for reference.

MobileNetV3-Large performs well in this low-latency scenario and can process 6
people per frame at 25 fps with 3-crop augmentation. The fastest inference is possible
with MobileNetV3-Small without test-time augmentation, in which case processing
speed remains above 50 fps even for crowds with more than 10 people, although at the
cost of a large decrease in accuracy. Single-person inference is possible in real-time even
with the highly accurate setting of using EfficientNetV2-S with 3-crop augmentation.

We show qualitative results obtained on the JRDB robotics dataset in Figure 7.5 on
page 118.

Overall, we conclude from these results that our method is real time–capable on
an edge device and that the EfficientNetV2 backbone is highly promising for this
task. In Chapter 8, we adopt it as the main backbone of choice, including its large,
EfficientNetV2-L variant.
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Figure 7.4: Multi-Person Performance. We analyze inference speed (as frames per
second) on the Jetson AGX Xavier embedded device, as a function of the number of
people in each frame.

7.8 Conclusion
We have proposed a method for truncation-robust absolute 3D human pose estimation,
building upon the metric-scale truncation-robust volumetric heatmap (MeTRo) concept
in combination with 2D heatmap estimation. We have seen the importance of
supervising the absolute pose prediction end-to-end by employing a differentiable
combination of 2D and root-relative 3D poses. For this, we tested two alternatives,
based on weak and full perspective geometry, but neither performed clearly better than
the other in our experiments, likely due to the limited camera diversity in the training
and test data. Applying MeTRAbs in the top-down multi-person paradigm, we have
achieved state-of-the-art results on the challenging MuPoTS-3D dataset while keeping
the method real-time capable. From these experiments, we can conclude that heatmap
estimation is a versatile paradigm, and it is possible to tackle absolute 3D human
pose estimation through exclusively estimating heatmaps and encoding all quantities
such as coordinates or sizes as activation locations, instead of as activation values.
Finally, we have discussed some system implementation details for high performance
and efficiency. We have also seen that our model can be deployed to low-powered
hardware with lightweight architectures, while maintaining its real-time capability.
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Figure 7.5: Qualitative results on the JackRabbot (JRDB) dataset.
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8
Bridging Skeleton Formats via Geometric
Autoencoding for Multi-Dataset Learning

Deep learning–based 3D human pose estimation performs best when trained on large
amounts of labeled data, making combined learning from many datasets an important
research direction. One obstacle to this endeavor are the different skeleton formats
provided by different datasets, i.e., they do not label the same set of anatomical
landmarks. There is little prior research on how to best supervise one model with
such discrepant labels. We show that simply using separate output heads for different
skeletons results in inconsistent depth estimates and insufficient information sharing
across skeletons. As a remedy, we propose a novel affine-combining autoencoder
(ACAE) method to perform dimensionality reduction on the number of landmarks.
The discovered latent 3D points capture the redundancy among skeletons, enabling
enhanced information sharing when used for consistency regularization.

Our approach scales to an extreme multi-dataset regime, where we use our proposed
PosePile meta-dataset, consisting of 28 3D human pose datasets to supervise one model.
This outperforms prior work on a range of benchmarks, including the challenging 3D
Poses in the Wild (3DPW) dataset. Our code and models are available for research
purposes.1

This chapter is based on our paper Sárándi et al. (2023), presented at the 2023 IEEE
Winter Conference on Applications of Computer Vision (©2023 IEEE, with permission).

8.1 Overview
Research on 3D human pose estimation has gone through enormous progress in recent
years (Moon et al., 2019; Fabbri et al., 2020; Kocabas et al., 2020; Liu et al., 2020; Cheng
et al., 2021; Joo et al., 2021; Lin et al., 2021a; Sun et al., 2021). While semi-supervised

1https://vision.rwth-aachen.de/wacv23sarandi
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CMU-Panoptic

Human3.6M

BML MoVi

3DPW (SMPL)

Berkeley MHAD

3D latent points

Figure 8.1: Different 3D human pose datasets (e.g., CMU-Panoptic and Human3.6M)
provide annotations for different sets of body landmarks (left). To best leverage such
discrepant labels for multi-dataset 3D pose estimation, we discover a smaller set of
latent 3D keypoints (right), from which the dataset-specific points can be reconstructed.
This allows us to capture the redundancy among the different skeleton formats and
enhance information sharing between datasets, ultimately leading to improved pose
accuracy.

and self-supervised approaches are on the rise (Zhang et al., 2021; Kundu et al., 2022),
best results are still achieved when using as much labeled training data as possible.
However, individual 3D pose datasets tend to be rather small and lacking in diversity,
as they are often recorded in a single studio with few subjects. Therefore, to provide
the best possible models for downstream applications (e.g., action recognition, sports
analysis, medical rehabilitation, collaborative robotics), it becomes important to use
many datasets in the training process. Thanks to sustained efforts by the research
community, numerous publicly released, labeled datasets exist.

However, as prior published works only train on at most a handful of them, it
remains unknown what performance could be achieved by combining more than a
decade of dataset collection efforts into a single model. Unfortunately, this is not
a trivial undertaking, since different datasets do not use the same skeleton format
for their labels (see Figure 8.1), e.g., the hip keypoints are at different heights, some
body parts are only labeled in some datasets, some provide surface markers while
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8.1 Overview

(a) Separate skeleton prediction (b) With our ACAE regularization
Front view Right side view Front view Right side view

Figure 8.2: We train models to jointly estimate multiple 3D human pose skeletons,
allowing us to train on many datasets at once. (a) Simply using separate prediction
heads on a shared backbone is an insufficient solution, as we obtain inconsistent
outputs along the depth axis. (b) We propose to capture and exploit the redundancy
among the different skeletons using a novel affine-combining autoencoder–based
(ACAE) regularization. This leads to a clear improvement in skeleton consistency.

others provide keypoints inside the body, etc. Prior work has rectified such differences
through a handful of individually defined rules (e.g., shrink the hip–pelvis distance by
a certain factor, Rapczyński et al., 2021), but this does not scale to many keypoints and
datasets—we need a more systematic and automatic method. The question we tackle
in this work is therefore: How can we automatically merge dozens of 3D pose datasets into
one training process, given the label discrepancies? We refer to this task as multi-skeleton 3D
human pose estimation.2

If we ignored the discrepancies altogether and proceeded as if keypoints with the
same name represented the same body landmark, the model would be supervised
with inconsistently labeled examples and would learn to output a skeleton format that
is some kind of average of the true ones, leading to subpar benchmark performance.
Alternatively, we may consider this as a multi-task learning problem, and predict
the skeletons on separate output heads on a shared backbone, without assuming
any skeleton correspondences. But as we will see, this is not ideal either, as there
is insufficient information sharing between skeletons, which is most apparent in
inconsistencies between the depth predictions of such a model, as shown in Figure 8.2a.

To strike the right balance between those two extremes, we aim to establish some
connections between the skeleton formats without assuming them to be the same. To
learn such geometric relations between skeletons, we introduce a novel autoencoder-

2For simplicity, we call any set of landmarks provided in a particular dataset a “skeleton,” and use
“landmark” and “joint” synonymously.
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based dimensionality reduction technique to compress a larger set of 3D keypoints
(the joints from all datasets) into a lower-cardinality representation (a smaller latent
keypoint set). The encoder and decoder compute affine combinations of their input
points, and are thus equivariant to rotation and translation. We further induce chirality
equivariance (left–right symmetry) via weight sharing (Yeh et al., 2019). We call
this model an affine-combining autoencoder (ACAE). We employ the ACAE in pose
estimation training as an output regularizer, to encourage consistent predictions. This
improves prediction results both qualitatively and quantitatively. As an alternative to
the regularization approach, we can also directly predict the latent keypoints of the
ACAE with a 3D pose estimator. This latter variant avoids the need for the underlying
pose estimator to estimate a large number of joints, which may be costly for some
methods. In both cases, the final predictions become consistent, showing the value of
our approach in tackling multi-dataset 3D pose estimation.

Through an extensive literature review, we have identified 28 datasets with high-
quality 3D human pose labels. By systematically preprocessing these datasets and
discarding redundant poses, we constructed PosePile, a meta-dataset of 13 million
examples, spanning more than a thousand people. This is almost two orders of
magnitude more data than in typical research papers (e.g., Human3.6M has 165k
examples after redundancy filtering). We show that using more data indeed helps,
and that our approach scales to 28 datasets providing a total of 555 joints in their
skeleton formats, summarized in Table 8.1. Our final models show excellent in-the-wild
performance, outperforming currently available models, making them highly useful
for downstream research.

In summary, we make the following contributions in this chapter.

1. We assemble PosePile, the largest scale meta-dataset for 3D human pose estimation
to date, consisting of 28 3D datasets, and release scripts for reproducing the
process3. We call special attention to the problem of disparate skeleton annotation
formats in these datasets, which has rarely been addressed in the literature so far.

2. We propose affine-combining autoencoders (ACAE), a novel linear dimensionality
reduction technique applicable to keypoint-based representations such as poses.

3. We apply the ACAE to regularize model predictions to become more consistent,
leading to qualitative and quantitative improvements, and we show that the
latent points can be predicted directly as well.

4. We release high-quality 3D pose estimation models with excellent and consistent
in-the-wild performance due to diverse supervision and our regularization tying
together different skeleton formats.

3https://github.com/isarandi/PosePile
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Dataset name #E
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Skeleton

Real images with markerless MoCap
MuCo-3DHP (Mehta et al., 2018) 677k 8 28 ♢♣♡ 3DHP
CMU-Panoptic (Joo et al., 2019) 2.81M >60 19 ♣♡ COCO
AIST-Dance++ (Tsuchida et al., 2019; Li et al., 2021e) 1.86M 30 19 ♣♡ COCO
HUMBI (Yu et al., 2020b) 1.26M 772 19 ♣♡ COCO
MPI-INF-3DHP (Mehta et al., 2017a) 627k 8 28 ♣♡ 3DHP
RICH (Huang et al., 2022) 96k 15 42 ♣♡ SMPL-X (Pavlakos et al., 2019)
BEHAVE (Bhatnagar et al., 2022) 42k 7 43 ♡ SMPL, COCO
ASPset (Nibali et al., 2021) 124k 15 17 ♡ *
3DOH50K (Zhang et al., 2020b) 50k <10 14 ♡ LSP (Johnson & Everingham, 2010)
IKEA ASM (Ben-Shabat et al., 2021) 23k 48 17 ♡ *

Real images with marker-based MoCap
Human3.6M (Ionescu et al., 2014) 165k 5 25 ♢♣♡ Human3.6M
TotalCapture (Trumble et al., 2017) 130k 5 21 ♣♡ *
BML-MoVi (Ghorbani et al., 2021) 553k 13 87 ♡ *
Berkeley-MHAD (Ofli et al., 2013) 526k 12 43 ♡ *
UMPM (van der Aa et al., 2011) 164k 30 15 ♡ *
Fit3D (Fieraru et al., 2021a) 147k 8 25 ♡ Human3.6M
GPA (Wang et al., 2019b) 109k 13 34 ♡ *
HumanSC3D (Fieraru et al., 2021b) 72k 4 25 ♡ Human3.6M
CHI3D (Fieraru et al., 2020) 46k 6 25 ♡ Human3.6M
Human4D (Chatzitofis et al., 2020) 40k 4 32 ♡ *
MADS (Zhang et al., 2017) 33k 5 15 ♡ *

Synthetic images
SURREAL (Varol et al., 2017) 1.9M 24 ♢♣♡ SMPL (Loper et al., 2015)
3DPeople (Pumarola et al., 2019) 946k 29 ♣♡ *
JTA (Fabbri et al., 2018) 562k 22 ♣♡ *
HSPACE (Bazavan et al., 2021) 195k 35 ♣♡ GHUM (Xu et al., 2020a)
SAIL-VOS (Hu et al., 2019) 101k 26 ♣♡ *
AGORA (Patel et al., 2021) 79k 66 ♣♡ SMPL[-X]
SPEC (Kocabas et al., 2021b) 59k 24 ♡ SMPL

Real images with 2D annotations (weak supervision)
COCO (Lin et al., 2014) 47k 17
MPII (Andriluka et al., 2014) 27k 16
PoseTrack (Andriluka et al., 2018) 40k 15
JRDB-Pose (Martín-Martín et al., 2021; Vendrow et al., 2022) 59k 17

Totals (for 3D-labeled data
Small (3 datasets) 2.8M 13 77 ♢
Medium (14 datasets) 10.8M >900 277 ♣
GRAND TOTAL (28 datasets) 13.4M >1k 555 ♡

Table 8.1: We study the extreme multi-dataset setting of 3D human pose estimation,
merging all listed datasets into the proposed PosePile meta-dataset. We define three
dataset combinations (indicated by ♢, ♣, and, ♡) to study the effect of training data
amount. (* marks custom dataset-specific skeletons.)
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8.2 Related Work
3D Human Pose Estimation. For an overview on the history and current trends in 3D
pose estimator design, see Chapter 2. We emphasize that our approach is independent
of the internals of the pose estimation method.

Handling Discrepancy in Skeleton Formats. In 2D-to-3D pose lifting, Rapczyński
et al. (2021) combine pairs of datasets in training by concatenating the training data sets,
and harmonize the joints through hand-crafted rules. In 2D pose tracking, Guo et al.
(2018) train dataset-specific output heads and combine their results via hand-crafted
rules. To unify pose representations, some prior works on (image-independent) MoCap
data standardize the height and bone length of skeletons (Holden et al., 2016; Mandery
et al., 2016). The AMASS dataset (Mahmood et al., 2019) addresses the problem of
discrepancy in MoCap data representations by mapping them to the SMPL (Loper
et al., 2015) representation, but the dataset does not provide corresponding images
and cannot be used for image-based pose estimation. Furthermore, the underlying
MoSH++ algorithm relies on a complex, multi-stage procedure requiring temporal
sequence data and a pre-existing body mesh model. More generally, in the mesh model–
based paradigm, researchers have handled different skeleton formats by learning joint
regressors from the mesh vertices. However, learning such regressors requires high-
quality mesh fits, and as Hedlin et al. (2022) show, these are difficult to obtain. In
contrast, our method has different goals and is much simpler in comparison. We do
not aim to generate a definitive, universal ground truth representation for all datasets,
instead our latent keypoint set is only used as an intermediate representation for the
pose estimator, but the losses and evaluations are still computed in the original skeleton
formats, after decoding the latent points into full skeletons.

Keypoint Discovery. Discovering a good set of landmarks to describe objects has
been investigated in other contexts in computer vision. 2D keypoint discovery has
been used to disentangle pose and shape in 2D human pose estimation (Jakab et al.,
2018, 2020). In 3D, Jakab et al. (2021) discover control points for deforming 3D shapes.
Rhodin et al. (2018b) learn a 3D human representation that consists of a set of 3D
points, which encode both pose and appearance, optimizing for the unsupervised
auxiliary task of novel view synthesis. Loper et al. (2014) optimize the placement of
sparse markers on the body to best capture both human shape and pose.

Linear Subspace Learning. Linear dimensionality reduction has a long history, with
principal component analysis being the best known representative (Pearson, 1901). Its
relation to autoencoders was discovered by Bourlard and Kamp (1988), and a recent
paper by the same first author reviews the developments since (Bourlard & Kabil, 2022).
Linear autoencoders have been employed in robust and sparse (Guerra-Urzola et al.,
2021) variants, a detailed overview is presented by Cunningham and Ghahramani

124



8.3 Method

Image 3D Pose
Estimator

left_shoulder_H36M
right_shoulder_H36M
...left_shoulder_3DHP
...

Lpose
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(c) Step 3: Fine-tune the model for consistency.

Figure 8.3: Our Complete Training Workflow. We train an initial model on all skeletons
of multiple datasets without enforcing consistency. Using this model, we create
pseudo–ground truth, needed to train an autoencoder that learns a latent keypoint
space. In turn, we use this frozen autoencoder to regularize the initial model during
fine-tuning, encouraging consistent predictions. Alternative strategies for the last step
are shown in Figure 8.4 on page 130.

(2015). Our proposed affine-combining autoencoders are related, but have different
constraints, tailored to our use case, i.e., that the weights sum to unity, and there is no
requirement of orthogonality, unlike in PCA.

8.3 Method
Our goal is to obtain a strong, monocular RGB-based 3D human pose estimation model
by integrating numerous datasets into one mixed training process, even when the
different datasets provide annotations according to different skeleton formats.

Suppose we have D skeleton formats, with {Jd}Dd=1 joints in each, for a total of
J =

∑D
d=1 Jd joints overall. Further, we have a merged dataset with N training

examples, each consisting of an image of a person and annotations for a subset of the J
body joints in 3D.

Our proposed workflow consists of three main steps. First, we train an initial model
that predicts the different skeletons on separate prediction heads, branching out from
a common backbone network (Figure 8.3a). With the resulting model, we can run
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inference and produce a pseudo-ground-truth “parallel corpus” of many poses given
in every skeleton format. From this, the geometric relations between skeleton formats
can be captured. We accomplish this in the second step, by training an undercomplete
geometry-aware autoencoder, which discovers a latent 3D body landmark set that best
captures human pose variations in the pseudo-GT data (Figure 8.3b). Finally, equipped
with the trained autoencoder, we rely on its learned latent space to make the model
output consistent across skeleton formats through output regularization (Figure 8.3c).
We also experiment with direct latent point prediction, and a hybrid variant for the
last step.

8.3.1 Initial Model Training

The first step of our workflow is to train an initial pose estimator to predict all J
joints separately (Figure 8.3a). This means that no correspondences or relations across
different skeletons are assumed, i.e., without specifying or enforcing that the left
shoulder joint of one skeleton should be predicted near the left shoulder of another
skeleton. This is akin to multi-task architectures that use different task-specific heads
on one backbone. The pose loss we minimize is Lpose = Lmeanrel + λprojLproj + λabsLabs,
where Lmeanrel is an ℓ1 loss computed after aligning the prediction and ground truth
at the mean, Lproj is an ℓ1 loss on the 2D coordinates after projection onto the image,
and Labs is an ℓ1 loss on the absolute pose (in camera coordinates). Since each training
example is annotated only with a subset of the J joints, we ignore any unlabeled joints
when averaging the loss.

When visualizing the different skeleton outputs of this trained model, we see
inconsistencies among them along the challenging depth axis (see Figure 8.2 on
page 121). This is understandable, since we have not employed any training mechanism
that would ensure any relations between the output skeletons (except that they are
predicted from shared backbone features). On the other hand, when projected onto
the image plane, the predictions appear sufficiently consistent.

8.3.2 Pseudo–Ground Truth Generation

To characterize how the joints of the different skeletons relate to one another, we need
pose labels according to all skeleton formats for the same examples, to function as a
“Rosetta Stone.” Since no such ground truth is available (datasets only provide one
type of skeletons, rarely two), we generate pseudo–ground truth using the initial
separate-head model. It is important to use images that the model can handle well in
this step, hence we choose a relatively clean, clutter-free subset of the training data for
this purpose (Human3.6M and MoVi). This yields a set of K pseudo-ground-truth
poses, with all J joints:

{
Pk ∈ RJ×3

}K
k=1

.
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8.3.3 Affine-Combining Autoencoder

To capture the redundancy among the full set of J joints, and ultimately to improve
the consistency in estimating them, we introduce a simple but effective dimensionality
reduction technique. Since the pseudo-GT is more reliable in 2D (theX andY axes) than
in the depth dimension, the transformation to and from the latent representation should
be viewpoint-independent, in other words the representation should be equivariant to
rotation and translation. This equivariance in turn requires the latent representation to
be geometric, i.e., to consist of a list of L latent 3D points Qk ∈ RL×3 (L < J).

This makes intuitive sense: the way the different skeletons relate to each other is only
dependent on how joints are defined on the human body, not on the camera angle. The
latent points are then responsible for spanning the overall structure of a pose. Specific
skeleton formats can then be computed in relation to these latents. Further, the latent
points should only have sparse influence on the joints, e.g., some latent points should
be responsible for the positioning of the left arm and these should have no influence
on the right leg’s pose.

We find that these requirements can be fulfilled effectively by adopting a novel
constrained undercomplete linear autoencoder structure, which we call affine-combining
autoencoder (ACAE). Instead of operating on general n-dimensional vectors, an ACAE’s
encoder takes as input a list of J points pj ∈ R3 and encodes them into L latent points
ql ∈ R3 by computing affine combinations according to

ql =
J∑

j=1

wenc
l,j pj ,

J∑
j=1

wenc
l,j = 1 ∀l = 1, . . . , L. (8.1)

Similarly, the decoder’s goal is to reproduce the original points from the latents,
again through affine combinations:

p̂j =
L∑
l=1

wdec
j,l ql,

L∑
l=1

wdec
j,l = 1 ∀j = 1, . . . , J . (8.2)

Since affine combinations are equivariant to any affine transformation, our encoder
and decoder are guaranteed to be rotation and translation equivariant. (Note that the
same weighting is used for the X , Y and Z coordinates.)

The learnable parameters of the ACAE are the affine combination weights wenc
l,j and

wdec
j,l , which can also be understood as (potentially negative) generalized barycentric

coordinates (Hormann & Sukumar, 2017) for the latents w.r.t. the full joint set and
vice versa. Allowing negative coordinates is necessary, as this allows the latents to
spread outwards from the body, similar to a cage used in graphics (Nieto & Susín,
2013). Restricting the encoder and decoder to convex combinations would severely
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limit its expressiveness. We adopt the ℓ1 reconstruction loss, as it is robust to outliers
which may be present due to noise in the pseudo-GT.

To achieve sparsity in the weights (i.e., spatially localized influence), we use ℓ1
regularization.

Problem Statement. We can now formally state our proposed ACAE problem in
matrix notation for the weights. Given K training poses with J joints

{
Pk ∈ RJ×3

}K
k=1

,

minimize
Wenc∈RL×J ,Wdec∈RJ×L

Lreconstr + λsparseLsparse, (8.3)

where Lreconstr =
1

K

K∑
k=1

∥Pk −WdecWencPk∥1, (8.4)

Lsparse =∥Wenc∥1 + ∥Wdec∥1, (8.5)

subject to Wenc1J =1L, Wdec1L = 1J , (8.6)

where 1a is a vector of dimension a filled with ones and λsparse controls the strength
of the sparsity regularization. The sum-to-one (partitioning of unity) constraints
ensure that the weights express affine combinations, which is necessary for translation
equivariance.

L1 Regularization Discourages Negative Weights. We note here that in the context of
the ACAE, the ℓ1 regularization plays another role as well, besides inducing sparsity:
it reduces the amount of negative weights, thus preferring nearly convex combinations.
To see that this is the case, we can partition the weights to negative and non-negative
ones and sum them up separately as

wenc
l,+ =

∑
j : wenc

l,j ≥0

wenc
l,j , (8.7)

wenc
l,− =

∑
j : wenc

l,j <0

wenc
l,j , (8.8)

wenc
l,+ + wenc

l,− = 1, (8.9)

and analogously for the decoder weights. Now, the ℓ1 penalty (sum of absolute values)
can be written as

ℓ1
(
wenc

l,·
)
=

J∑
j=1

∣∣wenc
l,j

∣∣ = wenc
l,+ − wenc

l,− =
(
1− wenc

l,−
)
− wenc

l,− = 1− 2 · wenc
l,− = 1 + 2 ·

∣∣wenc
l,−
∣∣.

(8.10)
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This means that the ℓ1 penalty is equivalent to penalizing the absolute sum of the
negative weights. When all weights are non-negative, we get convex combinations. In
other words, the ℓ1 regularization in the ACAE encourages constructing close-to-convex
combinations besides sparsity.

Reconstruction Loss on 2D Projection. As discussed above, the pseudo-GT is more
reliable in its 2D projection than along the depth axis. We therefore adapt the above
general problem formulation to take this into account by defining the reconstruction
loss on 2D projections:

Lproj
reconstr =

1

K

K∑
k=1

∥Π(Pk)− Π(WdecWencPk)∥1, (8.11)

where Π(·) denotes camera projection.
Our key insight here is that it is sufficient to observe the high-quality 2D image-plane

projections of this model’s outputs to characterize how the joints of different skeleton
formats geometrically interrelate, because these relations are viewpoint-independent.
As a simplified example, if we observe on many poses, that a certain joint tends to be
halfway in between two other joints in 2D, then this will also have to hold along the
depth axis.

Chirality Equivariance. As humans have bilateral symmetry, it is natural to expect the
autoencoder to be chirality-equivariant, i.e., to process the left and right sides the same
way (Yeh et al., 2019). To this end, we partition the latent keypoints into three disjoint
sets: left, right and central latents, following the same proportions as in the full joint
set. Assume, without loss of generality, that the points are sorted and grouped into
left-side, right-side and center blocks. We then impose the following weight-sharing
block structure on both the encoder and decoder weight matrices:

W =


W1 W2 W3

W2 W1 W3

W4 W4 W5

. (8.12)

This structure indeed ensures chirality equivariance, since the matrix remains the
same if we permute both its rows and columns by swapping the first two sections, i.e.,
swapping the left and right points in the inputs and the outputs.

Head Keypoint Weighting. Based on the intuition that smaller motions of head and
facial keypoints can be more semantically relevant, we weight these joints higher (by a
factor of 10) in the loss, ensuring that the latents sufficiently cover the head as well.
(We later found that this is not strictly necessary and the method also works without
this as well.)
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points.

Img. 3D Pose
Estimator

LconsLpose

Lpose

Lpose

Lteach Final
Output

(b) Hybrid of the models from Fig. 8.3c and 8.4a with
a further student–teacher loss.

Figure 8.4: Alternative model structures for the fine-tuning phase, to be used instead
of Figure 8.3c on page 125 in our training workflow.

Training. We train the autoencoder using the Adam optimizer (Kingma & Ba, 2015)
with batch size 32. To enforce the sum-to-one constraints, we normalize the weight
matrices within the computational graph.

8.3.4 Consistency Fine-Tuning
Once our affine-combining autoencoder is trained on pseudo-GT, we freeze its weights
and use it to enhance the consistency of 3D pose estimation outputs, with one of three
alternative methods.

Output Regularization. In the output regularization case (Figure 8.3c on page 125),
we estimate all J joints P̂ ∈ RJ×3 with the underlying pose estimator, but we feed this
output through the autoencoder, and apply an additional loss term that measures the
consistency of the prediction with the latent space, through an ℓ1 loss, as

Lcons =
∥∥∥P̂ −WdecWencP̂

∥∥∥
1
. (8.13)

This encourages that the separately predicted skeletons can be projected to latent
keypoints and back without information loss, thereby discouraging inconsistencies
between them. The pose loss Lpose (from Section 8.3.1 on page 126) is applied on P̂ .

Direct Latent Prediction. To avoid having to predict a large number of J joints in the
base pose estimator, we define an alternative approach where the latents Q̂ ∈ RL×3 are
directly predicted and then fed to the frozen decoder (Figure 8.4a). The last layer is
reinitialized from scratch, as the number of predicted joints changes from J to L. The
pose loss Lpose is applied on WdecQ̂.
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Hybrid Student–Teacher. In a hybrid of the above two variants, we keep the full
prediction head and add a newly initialized one to predict the latents Q̂ directly
(Figure 8.4b). To distill the knowledge of the full prediction head to the latent head, we
add a student–teacher-like ℓ1 loss

Lteach =
∥∥∥Q̂− sg

(
WencP̂

)∥∥∥
1
, (8.14)

where sg(·) is the stop-gradient operator, which ensures that gradients from this loss are
only backpropagated to the latent predictor (the student), as typical in student–teacher
setups. During inference, we use WdecQ̂ as the output, to be as lightweight as direct
latent prediction.

8.4 Experimental Setup
We now describe our experimental setup, consisting of the base 3D pose estimator
model, the details of the training procedure, the used datasets and the evaluation
metrics.

8.4.1 Base Model
We adopt our recent state-of-the-art MeTRAbs 3D human pose estimator (Sárándi
et al., 2021; described in Chapter 7) as the platform for our experiments, but we note
that our method is agnostic to the specifics of the underlying pose estimator. Unless
mentioned otherwise, the backbone is EfficientNetV2-S (Tan & Le, 2021).

8.4.2 Training Details
We crop a 256×256 px square around the person, apply perspective undistortion with
camera intrinsics and perform augmentation as in Chapter 7.

Optimizer Settings. We perform 400k training steps with AdamW (Loshchilov &
Hutter, 2019) by default. Our learning rate schedule is shown in Figure 8.5. The
learning rate starts at 2.12 × 10−4 and exponentially decays by a factor of 3 over 92% of
training, then drops by a factor of 10 and then further decays exponentially by a factor
of 3 until the end of the initial training.

The final fine-tuning phase has 40k iterations with smaller learning rate on the
backbone than the heads. We perform a warm restart on the last layer (the prediction
head) in order to ensure that the regularization loss can take effect, without disrupting
the already mostly converged weights of the backbone. For the head, we follow a
similar recipe as in the initial training, but we perform the large learning rate drop at
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Figure 8.5: Learning rate schedules.

50% of the fine-tuning phase. For the backbone, we repeat the last, decaying segment
of the initial schedule.

Loss Details. We make minor adjustments to the MeTRAbs model (described in
Chapter 7), which we use as the basis of our experiments. In Chapter 7, we performed
internal supervision on the output of a 2D heatmap head and a 3D heatmap head,
besides supervision on the final output. Instead, we simplify this and only use the
absolute pose output for supervision, i.e., the 2D projection loss and the mean-relative
loss are computed on this single, absolute output. This makes the implementation
cleaner when more losses are added for consistency regularization or student–teacher
latent matching, etc., since the model can be treated as a single-output black box.

The weak supervision loss for 2D-annotated examples only consists of the 2D
projection loss. For this, we do not specifically predict skeletons according to the
skeleton formats of the 2D datasets. Instead, the prediction is derived by averaging the
corresponding 3D joint predictions for every output skeleton format. In other words,
for the calculation of the 2D weak loss, we consider our prediction for the left shoulder
to be the average of all the left shoulder joints in every skeleton format that we use.

We use λproj = 1 and λabs = 0.1 and scale the weak supervision loss by a factor of 0.2.
The absolute loss Labs is only turned on after 5000 steps (also in fine-tuning, for

consistency), similarly with the teacher loss. In some datasets the absolute distance
to the person can be very large (e.g., JTA, SAIL-VOS, ASPset). Here the absolute loss
would overwhelm the total loss, so we scale down the absolute Z component to a
maximum effective distance of 10 m for loss computation.

Batch Composition. We use a total batch size of 128, with every dataset represented
with a fixed number of examples per batch. In Table 8.2 on page 134, we specify the
number of examples from each dataset per batch. This is based on the total number of
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examples in each dataset but not linearly, as we oversample smaller datasets compared
to their size, in order to provide more diverse supervision to the model. For batch
generation, we set up one queue per dataset that iterates over epochs of that dataset,
then we interleave the streams and chunk it into batches (as opposed to independently
sampling each batch).

Initialization. We initialize with ImageNet-pretrained weights. For the ResNet
experiment in Table 8.5 on page 140, we use ResNet-50V1.5 as implemented in PyTorch,
ported to TensorFlow, along with the ImageNet weights, which we found to be superior
to the ones provided with TensorFlow.

We precisely control the random seeds, which guarantees that bitwise equal batches
are fed to each training run, improving comparability.

BatchNorm Aspects. We use Ghost BatchNorm (Hoffer et al., 2017; Summers &
Dinneen, 2020) with size 16, as this improved convergence in multi-dataset training,
together with switching the BatchNorm layers to inference mode for the last 1000
updates.

In this inference-mode fine-tuning the BatchNorm layers use the stored, fixed statistics
for normalization instead of the usual training mode of using the statistics of the
current minibatch. In Ghost BN, the stored statistics may be suboptimal, since they
are updated based on parts of the batch, instead of the overall batch statistics. A final
fine-tuning in “inference mode” allows the network to fine-tune its weights to the
setting that it will be used in during inference (i.e., to adapt the weights to work well
with the stored statistics).

Max-Norm Constraint to Combat Weight Explosion. Further, with long trainings,
we found that training in 16-bit floating point (FP16) precision is unstable, as the
activations tend to grow out of the representable range. This happens because the
convolutional kernels of the backbone grow in scale during gradient descent. Indeed,
since they are always followed by BatchNorm layers in EfficientNetV2, the weight scale
has no impact on the network output (though it has an effect on the effective learning
rate, van Laarhoven, 2017). Therefore, the gradient vector is always orthogonal to the
weight vector for each kernel (as scaling the weights has no effect on the loss), leading
to gradual growth in scale. Roburin et al. (2022) provide a detailed analysis of this
spherical view of training with normalization layers and their first figure illustrates
how this growth happens.

We mitigate the problem by applying a max-norm constraint on the convolutional
kernels, to keep them from growing without bound. Some numerical instability
remains in case of very long trainings, the cause of which would require more detailed
investigation.

Implementation Details. We use TensorFlow version 2.9 with Keras, CUDA 11.4
and CuDNN 8.2.4 for the implementation. Training takes about 2 days with the
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Dataset name Small Medium Full

Real images with markerless MoCap
MuCo-3DHP 32 9 6
CMU-Panoptic – 9 7
AIST-Dance++ – 9 6
HUMBI – 7 5
MPI-INF-3DHP – 5 3
RICH – 7 4
BEHAVE – – 3
ASPset – – 4
3DOH50K – – 3
IKEA ASM – – 2

Real images with marker-based MoCap
Human3.6M 32 9 4
TotalCapture – 5 3
BML-MoVi – – 5
Berkeley-MHAD – – 3
UMPM – – 2
Fit3D – – 2
GPA – – 4
HumanSC3D – – 1
CHI3D – – 1
Human4D – – 1
MADS – – 2

Synthetic images
SURREAL 32 8 5
3DPeople – 6 4
JTA – 5 3
HSPACE – 5 3
SAIL-VOS – 7 5
AGORA – 5 3
SPEC – – 2

Real images with 2D annotations (weak supervision)
COCO 8 8 8
MPII 8 8 8
PoseTrack 8 8 8
JRDB 8 8 8

Table 8.2: Batch composition for the experiments with the three different levels of
dataset combinations. Each minibatch consists of 96 examples with 3D labels and 32
with 2D labels.
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EfficientNetV2-S backbone and about 6 days with EfficientNetV2-L on a single Nvidia
A40 GPU (48 GB) in mixed FP16/FP32 precision.

The autoencoder weights are trained on pseudo-GT obtained with EfficientNetV2-L.

8.4.3 Datasets
See Table 8.1 on page 123 for an overview of all used datasets, which employ a variety
of skeleton formats. In some cases, e.g., when annotations are derived through
triangulating COCO-like predictions (of e.g., OpenPose), or through fitting a body
model (e.g., SMPL), we can assume that multiple datasets use the same convention
(indicated in the last column). For other datasets, we assume the skeleton is a custom
one, yielding 555 distinct keypoints in total. As most 3D human datasets contain
videos, rather than isolated images, the number of sufficiently different poses is smaller
than the total number of annotated frames. We hence discard examples where all
joints remain within 100 mm of the last stored example. Our overall processing ensures
that each training example has a person-centered image crop, camera intrinsics, 3D
coordinates for some subset of the joints, a bounding box and a segmentation mask.

Where missing, we obtain person bounding boxes with YOLOv4 (Bochkovskiy et al.,
2020) and person segmentation with DeepLabv3 (Chen et al., 2017b). Examples with
implausible bone lengths are removed to avoid training on erroneous annotations. We
use all cameras of 3DHP, and all HD cameras of CMU-Panoptic (and all sequences with
labels). We further calibrated all cameras of BML-MoVi that did not have calibration
provided in the dataset, and use all of them in training (based on pose predictions from
an earlier version of our model). We use 200k composited images for MuCo-3DHP,
generated with the official Matlab script.

8.4.4 Evaluation Metrics
We evaluate on four datasets: MuPoTS (Mehta et al., 2018), 3DPW (von Marcard et al.,
2018), 3DHP (Mehta et al., 2017a) and Human3.6M (Ionescu et al., 2014). Over the
years, different evaluation metrics and protocols have become customary on different
datasets, whose details can be very arcane. Especially in a multi-dataset setting, we
find it important to use consistent metrics. For our main experiments, we therefore
adopt the following four metrics everywhere:

• MPJPE: mean Euclidean distance between predicted and ground-truth joints
after alignment at the root joint.

• P-MPJPE: mean Euclidean distance after Procrustes alignment.

• PCK@100 mm: percentage of joints predicted within 100 mm of the ground truth
after root alignment.
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• CPS@200 mm: percentage of poses where all joints are within 200 mm distance
of the ground truth after root alignment (Wandt et al., 2021).

We evaluate all 24 SMPL joints for 3DPW, and 17 joints for 3DHP and MuPoTS. In
case of 3DPW, the entire dataset is used for testing, none of it for training. For 3DHP
we use the official split, for Human3.6M the most common split from the literature,
i.e., subjects S9 and S11 are used for testing.

For MuPoTS, we evaluate the matched poses. We use the same YOLOv4 detector in
all our experiments (with a high recall of 94.6%), hence the matched-pose results are
directly comparable between our different configurations. For our main evaluations,
in each benchmark, we simply calculate the average metrics over all metric-scale poses.

In Table 8.5 on page 140, for SOTA comparison, we use the more complex standard
evaluation metrics. That is, for MuPoTS, here we use bone rescaling, normalized
skeletons, and averaging is performed first per sequence and the final value is the
average of per-sequence averages. In this, and also other details, we follow the same
protocols as in Chapter 7 (e.g., which joints to evaluate).

8.5 Results
We present results showing that using many datasets makes the model more accurate,
our consistency regularization brings qualitative and quantitative improvements, the
final models are significantly above the performance reported in state-of-the-art papers,
as well as further results and ablations.

8.5.1 Benefit of Training Data Scale
Since one contribution of this chapter is the study of the large-scale multi-dataset
training regime, an important question is whether this brings improvements or whether
performance saturates with just a few large-scale datasets. As a simple baseline, we
train models on individual datasets and evaluate on the corresponding test splits.
(With MuPoTS, we use MuCo-3DHP for training). We then train on three dataset
combinations, as shown in Table 8.3. There is a clear trend showing performance
improvement when training with more datasets, and the small dataset combination
also outperforms single-dataset baselines.

We note that Human3.6M scores sometimes suffer from additional data. Human3.6M
uses the same studio environment in the training and evaluation split, therefore the
model works better when a large part of the training batches are filled with Human3.6M
examples, allowing it to specialize on images from this room, but this does not reflect
true generalization ability. The model trained on the large dataset combination achieves
very strong scores across the board, confirming that using many datasets makes a
difference.
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MuPoTS-3D 3DPW MPI-INF-3DHP Human3.6M
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0

MPJP
E

P-M
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0
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E

P-M
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E
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0
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0
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E
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PJP

E
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0

Single dataset 91.3 62.9 65.3 53.5 – – – – 66.5 46.7 83.0 78.4 48.3 33.2 92.1 89.8

Small (♢) 88.4 61.3 67.3 59.9 81.0 54.5 72.9 35.8 64.8 45.9 83.7 78.9 42.1 33.8 94.6 90.3
Medium (♣) 86.1 59.4 69.0 67.9 64.3 45.6 82.5 70.0 61.7 44.6 85.6 80.2 43.2 34.5 94.3 90.3
Full (♡) 84.6 59.0 70.1 66.0 61.8 43.4 83.8 71.1 59.6 44.1 86.6 81.8 44.7 34.3 94.3 90.1

Table 8.3: Results using different amounts of datasets when training a separate-head
model. Table 8.1 on page 123 defines which datasets belong in which combination size.
Using more datasets improves results on the 3DPW, 3DHP and MuPoTS benchmarks.
On Human3.6M the small dataset combination gives better results, but this studio
benchmark it less suited for studying real-world generalization capacity, as opposed to
in-the-wild and outdoor benchmarks such as 3DPW and MuPoTS.

Despite the good benchmark scores, we qualitatively observe (Figure 8.2 on page 121)
that the different skeleton outputs can still be inconsistent among themselves.

8.5.2 Consistent Multi-Skeleton Prediction
A first naive baseline for achieving consistent predictions is to merge joints from
different skeletons (e.g., we predict only one “left shoulder” joint), reducing the joint
count from 555 to 163. This leads to weaker results than predicting all joints separately
(see Table 8.4), since joints with similar names may represent somewhat different
keypoints.

Human3.6M is again an outlier, as the prediction with merged joints works well for
it. Since the model can easily recognize that a test image comes from the Human3.6M
studio, it can adapt its prediction to match the Human3.6M skeleton format. This is
not possible on e.g., 3DPW, since the model cannot know in advance what skeleton
format will be used for the reference poses of these images, since they come from
diverse in-the-wild scenes.

When using our proposed ACAE-based regularization (Figure 8.3c on page 125), we
can see consistent improvements for almost all metrics. However, the improvement in
the qualitative performance of the model is even more striking. As seen in Figure 8.2
on page 121, the regularized model creates significantly more consistent skeleton
predictions. Especially the depth-consistency is improved, but some errors in the
frontal view are also corrected. Figures 8.7 to 8.9 show further predictions for a
variety of images, showing that these observations hold broadly. Furthermore, we
see excellent in-the-wild performance, even on challenging poses, or in suboptimal
lighting conditions.
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MuPoTS-3D 3DPW MPI-INF-3DHP Human3.6M
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PJP
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Eff
N

et
V

2-
S

Merged joints 91.9 67.3 63.2 69.9 72.5 48.3 79.5 69.7 69.8 51.6 80.7 79.4 44.6 34.2 93.9 89.8
Separate joints (8.3a) 84.6 59.0 70.1 66.0 61.8 43.4 83.8 71.1 59.6 44.1 86.6 81.8 44.7 34.3 94.3 90.1

Consistency reg. (8.3c) 81.8 57.8 72.5 72.9 61.5 43.0 84.0 71.9 59.2 43.6 86.6 82.7 45.2 33.3 94.4 90.1
Latent pred. (8.4a) 83.0 58.9 71.4 71.2 62.0 43.6 84.0 71.7 60.2 44.7 86.1 80.2 46.5 34.4 93.9 89.5
Hybrid (8.4b) 82.7 58.5 71.6 72.1 61.8 43.3 84.0 71.8 60.4 44.8 85.9 80.9 46.1 34.2 94.1 89.4

Eff
N

et
V

2-
L Separate joints 82.9 57.7 71.0 70.9 60.9 42.1 84.4 73.4 59.1 42.2 88.0 85.3 41.6 32.0 95.1 92.1

Consistency regul. 81.0 57.4 72.8 74.8 60.6 41.7 84.7 74.3 57.9 41.8 88.2 84.7 40.6 30.7 95.7 92.6
Hybrid 81.3 57.9 72.4 73.9 61.1 42.0 84.6 74.3 59.2 42.8 87.2 84.3 41.8 31.4 95.6 92.6

Table 8.4: Main results. We evaluate different strategies for handling different skeleton annotation formats during
training.
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8.5 Results

Overall, the model that estimates latent keypoints (Figure 8.4a on page 130) has
slightly lower performance than the separate-head baseline, likely because latent
keypoints may be placed at less characteristic locations on the body and can thus be
harder to localize. Further, the latent keypoint head’s weights are initialized from
scratch, whereas the regularization-based method fine-tunes a pre-trained head. The
hybrid combination from Figure 8.4a on page 130 performs slightly worse than the
model that is only regularized, but in many cases still outperforms the baseline. This
shows that a direct estimation of the discovered latent keypoints is also a viable option.
By design, this approach also produces consistent results, since we compute a single
latent set of keypoints from which we decode all skeletons.

We also train the regularization and hybrid variants with EfficientNetV2-L (lower
part of Table 8.4). Overall, the results follow the same order, and they are better across
the board. Regularization improves results and also leads to consistent predictions,
and the hybrid approach is somewhat better than the initial model trained to predict
separate joints.

This means that our autoencoder-based regularization is effective at improving
results both quantitatively and qualitatively, and the discovered latent keypoints can
be predicted directly. This opens up interesting future research directions, as the
latent keypoints can be seen as a model agnostic interface, potentially allowing us to
incorporate new skeleton formats by expanding the decoder, without a need for model
specific fine-tuning or probing.

8.5.3 Comparison to Prior Work
In Table 8.5, we compare our final results to recent state-of-the-art published works
(using standard protocols) and observe much better accuracy than SOTA models.
We emphasize that this comparison is not “fair” w.r.t. the amount of training data.
However, our goal in this chapter is to show the value in large-scale multi-dataset
training, and to investigate how to best supervise models in that setting.

8.5.4 Ablations
Chirality Equivariance Constraints. In Table 8.6, we analyze the effect of enforcing
chirality equivariance on the ACAE. In the quantitative metrics, we see approximately
no change or a slight positive effect on both evaluated models. Given that symmetry
makes sense as an inductive bias, we use chirality equivariance in our default setting.

Latent Keypoint Count. As Figure 8.6 on page 141 shows, once a minimum number of
latent points is reached, the reconstruction error only decreases slowly (evaluated on a
held-out pseudo-GT validation set). We evaluate several latent sizes for fine-tuning in
Table 8.7 on page 141. 48 points work well in practice, and our regularization method
is robust w.r.t. this hyperparameter. When directly predicting latent keypoints, using
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8 Bridging Skeleton Formats via Geometric Autoencoding for Multi-Dataset Learning

MuPoTS-3D 3DPW MPI-INF-3DHP Human3.6M

PCK150↑ MPJPE↓ P-MPJPE↓ PCK50↑ MPJPE↓ PCK150↑ MPJPE↓
Sun et al. (2021) – 80.1 56.8 36.5 – – –
Lin et al. (2021b) – 74.7 45.6 – – – 51.2
Gong et al. (2021) – – – – 71.1 89.2 50.2
Cheng et al. (2023) 89.6 – – – – – 49.3

Ours with crop resolution 256×256 and 400k steps
ResNet-50V1.5 92.2 65.5 47.2 49.0 64.2 93.3 45.8
EffNetV2-S 93.7 61.5 43.0 51.8 60.0 95.3 45.2
EffNetV2-L 94.1 60.6 41.7 52.1 59.2 95.8 40.6

Ours with crop resolution 384×384 and 800k steps
EffNetV2-S 94.9 59.5 41.0 53.1 58.7 96.2 41.4
EffNetV2-S 5-crop TTA 95.2 58.9 39.9 53.6 57.5 96.7 40.1
EffNetV2-L 95.4 58.9 39.5 53.9 55.4 97.1 36.5
EffNetV2-L 5-crop TTA 95.7 57.0 38.1 55.4 53.6 97.6 35.5

Table 8.5: Comparison to recent state-of-the-art works. TTA means test-time augmen-
tation.

C
hi

ra
lit

y MuPoTS-3D 3DPW MPI-INF-3DHP

MPJPE↓ PCK100↑ CPS200↑ MPJPE↓ PCK100↑ CPS200↑ MPJPE↓ PCK100↑ CPS200↑
Cons. regul. 81.8 72.4 73.1 61.6 83.9 71.9 59.2 86.6 82.1
Cons. regul. ✓ 81.8 72.5 72.9 61.5 84.0 71.9 59.2 86.6 82.7
Hybrid 83.2 71.2 71.7 61.7 84.0 72.0 60.3 85.9 80.7
Hybrid ✓ 82.7 71.6 72.1 61.8 84.0 71.8 60.4 85.9 80.9

Table 8.6: Effect of enforcing chirality equivariance constraints on the autoencoder’s
weight matrices.

too few or too many latent keypoints has a negative effect, but the differences are small
beyond 32.

Training Length. In Table 8.8 on page 142, we study the effect of the length of training
on the final model performance. Clearly, longer training can further improve the
results and especially the correct pose score improves. Do note that every new line
doubles the number of training steps, so this is expensive.

Table 8.9 on page 142 shows that further extending the fine-tuning phase can bring
minor performance benefits. For reasons of practicality, we chose 400k training steps
and 40k fine-tuning step as the default setting for the main experiments, albeit one
could achieve slightly better results with longer schedules.

Ghost BatchNorm. In Table 8.10 on page 143, we show an ablation on using Ghost
BatchNorm. We compare three options: normal BatchNorm, Ghost BatchNorm where
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8.5 Results
#l

at
en

ts MuPoTS-3D 3DPW MPI-INF-3DHP

MPJPE↓ PCK100↑ CPS200↑ MPJPE↓ PCK100↑ CPS200↑ MPJPE↓ PCK100↑ CPS200↑

C
on

s.
re

g. 24 81.6 72.4 73.1 62.0 83.9 71.7 58.9 86.5 81.7
32 82.2 72.1 72.5 61.8 83.9 71.8 59.2 86.5 81.9
48 81.8 72.5 72.9 61.5 84.0 71.9 59.2 86.6 82.7
64 82.3 72.0 73.0 61.8 83.8 71.8 59.2 86.6 82.1

H
yb

rid

24 86.0 69.4 65.0 67.2 81.2 64.6 70.2 80.0 62.2
32 82.7 71.4 72.1 62.3 83.9 71.8 60.2 86.2 81.4
48 82.7 71.6 72.1 61.8 84.0 71.8 60.4 85.9 80.9
64 84.1 70.6 67.0 62.2 83.7 71.3 62.0 84.5 80.2

Table 8.7: Effect of the number of latent points on final performance. We use 48 as our
default setting.
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Figure 8.6: Intrinsic dimension analysis of our pseudo–ground truth with 555 joints.
The residual error curve shows a characteristic elbow shape.

the 96 3D annotated examples are normalized as one group and the 32 2D-labeled ones
as another, and Ghost BatchNorm with ghost batch size 16. While the differences are
not very large, the Ghost BatchNorm options tend to perform better. This is probably
due to the discrepancies in BatchNorm statistics among datasets.

Furthermore, Table 8.10 on page 143 also demonstrates that it is important to fine
tune the network at the end in inference mode when using Ghost BatchNorm.
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8 Bridging Skeleton Formats via Geometric Autoencoding for Multi-Dataset Learning

MuPoTS-3D 3DPW MPI-INF-3DHP Human3.6M
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Initial, separate-skeleton model
100k 88.6 62.4 67.8 60.0 65.9 47.0 81.5 65.3 66.3 51.2 82.2 71.7 47.7 37.6 91.9 86.6
200k 87.3 60.3 68.3 65.1 63.1 44.6 82.6 69.5 63.1 47.4 84.4 77.1 46.8 36.2 93.1 88.7
400k 84.6 59.0 70.1 66.0 61.8 43.4 83.8 71.1 59.6 44.1 86.6 81.8 44.7 34.3 94.3 90.1
800k 82.9 57.8 70.5 69.8 61.7 42.6 83.7 73.1 58.8 42.9 87.3 83.0 43.0 33.2 94.8 91.4

Fine-tuned with consistency regularization for 40k steps
100k 85.5 60.6 70.3 66.6 65.0 46.0 81.8 66.9 63.6 48.7 83.9 74.1 46.7 36.4 92.5 87.6
200k 84.2 59.2 70.8 70.4 63.4 44.3 82.7 69.9 61.4 46.3 85.4 79.1 46.7 35.1 93.3 88.6
400k 81.8 57.8 72.5 72.9 61.5 43.0 84.0 71.9 59.2 43.6 86.6 82.7 45.2 33.3 94.4 90.1
800k 80.5 56.8 72.7 74.4 61.3 42.1 84.5 73.3 57.7 42.2 87.7 84.3 42.0 31.9 95.3 91.4

Table 8.8: Ablation for the length of training.
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20k 82.0 58.0 72.2 72.1 61.7 43.0 83.9 71.3 59.3 43.6 86.5 82.1 44.9 33.5 94.3 89.8
40k 81.8 57.8 72.5 72.9 61.5 43.0 84.0 71.9 59.2 43.6 86.6 82.7 45.2 33.3 94.4 90.1
80k 81.6 57.8 72.4 73.2 61.4 42.9 84.1 72.1 58.4 43.2 87.2 82.9 44.5 33.3 94.6 90.1

Table 8.9: Ablation for the length of consistency-regularized fine-tuning with an initial
training length of 400k steps.

8.6 Conclusion
We have proposed a principled, automatic approach to the problem of large-scale
multi-skeleton training of 3D human pose estimation. Despite its practical relevance in
exploiting a large number of 3D pose datasets in one training, this problem has been
largely overlooked in the literature.

Our approach relies on a novel formulation of dimensionality reduction of sets of
keypoints, via an affine-combining autoencoder with guaranteed built-in equivariances
to common transformations. By regularizing a 3D human pose estimator’s output
to stay close to the learned latent space discovered by the autoencoder, we can more
effectively share information between the different datasets, resulting in an overall
more accurate and consistent pose estimator. We release code for data processing and
training, as well as trained models to serve as high-quality off-the-shelf methods for
downstream research.
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8.6
Conclusion
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Initial, separate-skeleton model, with fine-tuning at the end with BN in inference mode
Normal BN 84.5 59.2 70.0 65.9 62.6 43.6 83.6 71.9 61.3 43.7 85.7 82.0 46.3 34.6 94.2 89.9
Ghost BN (3D/2D) 83.6 58.7 70.4 70.0 62.8 43.5 83.2 71.2 61.8 45.1 85.7 80.3 46.6 34.7 94.1 90.5
Ghost BN 16 84.6 59.0 70.1 66.0 61.8 43.4 83.8 71.1 59.6 44.1 86.6 81.8 44.7 34.3 94.3 90.1

Initial, separate-skeleton model, without fine-tuning at the end with BN in inference mode
Normal BN 84.2 59.1 70.4 66.4 62.6 43.6 83.5 71.9 60.4 43.4 86.1 82.3 45.9 34.4 94.2 89.8
Ghost BN (3D/2D) 88.2 63.5 66.7 62.0 67.3 47.5 80.9 68.0 66.3 49.0 81.7 77.4 50.8 40.4 90.7 87.7
Ghost BN 16 85.8 60.4 69.0 63.5 63.4 44.7 83.2 70.8 59.8 44.3 86.3 81.8 45.4 35.7 93.6 89.6

Fine-tuned with consistency regularization for 40k steps, with fine-tuning at the end with BN in inference mode
Normal BN 83.3 58.5 70.9 73.2 63.1 43.7 83.4 71.8 60.5 43.4 85.9 82.7 46.0 33.5 94.4 89.9
Ghost BN (3D/2D) 81.2 57.7 72.5 74.0 62.2 43.0 83.7 72.3 60.5 44.4 86.1 80.9 46.2 33.7 94.1 90.6
Ghost BN 16 81.8 57.8 72.5 72.9 61.5 43.0 84.0 71.9 59.2 43.6 86.6 82.7 45.2 33.3 94.4 90.1

Fine-tuned with consistency regularization for 40k steps, without fine-tuning at the end with BN in inference mode
Normal BN 83.1 58.7 71.3 72.9 62.8 43.5 83.5 71.7 59.6 43.2 86.4 82.9 45.5 33.4 94.5 89.9
Ghost BN (3D/2D) 89.1 64.6 66.4 62.1 68.5 49.4 79.6 65.2 73.4 52.9 76.4 70.9 58.4 43.4 85.7 82.7
Ghost BN 16 84.0 60.0 70.7 69.7 63.3 45.3 82.7 69.4 63.2 45.7 83.8 80.1 49.0 36.6 92.2 88.3

Table 8.10: Ablation for Ghost Batch Normalization and inference-mode fine-tuning for 1000 steps.
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8 Bridging Skeleton Formats via Geometric Autoencoding for Multi-Dataset Learning

(a) Separate skeleton prediction (b) With our proposed ACAE regul.
Front view Right side view Front view Right side view

Figure 8.7: A qualitative result comparison between a model trained without (a) and
with our ACAE regularization (b). It can clearly be seen that our regularization leads
to improved skeleton consistency.
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8.6 Conclusion

(a) Separate skeleton prediction (b) With our proposed ACAE regul.
Front view Right side view Front view Right side view

Figure 8.8: A qualitative result comparison between a model trained without (a) and
with our ACAE regularization (b). It can clearly be seen that our regularization leads
to improved skeleton consistency.
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8 Bridging Skeleton Formats via Geometric Autoencoding for Multi-Dataset Learning

(a) Separate skeleton prediction (b) With our proposed ACAE regul.
Front view Right side view Front view Right side view

Figure 8.9: A qualitative result comparison between a model trained without (a) and
with our ACAE regularization (b). It can clearly be seen that our regularization leads
to improved skeleton consistency.
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9
Reposing Humans by Warping 3D Features

In the previous chapters, we have presented a series of methods using volumetric body
joint heatmap representations, predicted directly through fully convolutional networks.
Motivated by the state-of-the-art performance achieved through this representation,
we pose the research question: Could we predict richer information than body joints
in the same way?

To explore this possibility, we consider the task of pose-conditioned human image
synthesis, also known as person reposing. In this task, the inputs are an image of a
person and a desired target pose, while the output needs to be a synthesized image of
the same person in the target pose. This requires representing not only the human pose
but also the appearance, as well as reasoning about occlusions and unseen body parts.
Our aim in this chapter is to demonstrate the versatility of direct volumetric prediction,
allowing us to create a three-dimensional volumetric feature map, which can then be
easily manipulated by geometric warping operations to change the person’s pose, as
illustrated in Figure 9.1. Crucially, the warping will be performed in 3D, which, as we
demonstrate, improves the resulting image quality, over a 2D baseline.

This chapter is based on our paper Knoche et al. (2020), presented at the 2020 IEEE
Conference on Computer Vision and Pattern Recognition – Workshop on Towards
Human-Centric Image/Video Synthesis (©2020 IEEE, with permission), in turn based
on Markus Knoche’s master’s thesis project, supervised by Prof. Bastian Leibe and
myself.1

1While I devised the motivation and overall idea behind this work, the software implementation was
performed by Markus Knoche. The detailed experimental and architectural design choices were
made in collaboration between us.
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9 Reposing Humans by Warping 3D Features

Lifting
Encoder

Projection
Decoder

Warp according to the
desired pose change

Figure 9.1: We use a fully convolutional encoder network to generate a volumetric
representation of the input person, which can be warped in 3D and decoded into a 2D
output image to achieve reposing.

9.1 Overview
The ability to freely change a human’s pose has a variety of real-world applications from
generating large crowds or performing stunts in filmmaking to data augmentation for
human-centric computer vision tasks. Several prior works employ fully convolutional
neural networks for this task. However, unlike typical image-to-image translation
tasks (e.g., colorization), reposing requires moving information over large spatial
distances in the image, since the same body part may appear at a very different image
position in the input and the output. The only mechanism available to typical fully
convolutional networks for moving information over image space is to gradually
pass it on to neighboring pixel locations in the convolutional layers. This, however,
requires a large number of layers to reach the required distance. To make “information
shuttling” quicker, many recent approaches apply some form of explicit geometric
transformations. Some warp 2D features such that they become aligned with the
target pose, which is also specified in 2D (Balakrishnan et al., 2018; Dong et al., 2018;
Neverova et al., 2018; Siarohin et al., 2018; Grigorev et al., 2019; Horiuchi et al., 2019).
We argue that such a 2D approach is insufficient to capture complex, three dimensional
changes in articulated human pose.

Mesh-based approaches fit a 3D body model to the input, infer the texture and
render the mesh in the target pose (Zanfir et al., 2018; Liu et al., 2019c). While capturing
the 3D aspect, these approaches have the downside that a specific human might not
be captured well by a general model, for example due to uncommon hairstyles and
spacious clothing.

Inspired by recent volumetric approaches for related tasks (Pavlakos et al., 2017;
Nguyen-Phuoc et al., 2019), we propose a novel reposing method, illustrated in
Figure 9.1, which warps 3D volumetric CNN features without requiring an explicit
mesh model. Using only a 2D image as input, our model implicitly learns a latent
volumetric representation of the input person. This representation is then warped
using 3D transformations based on input and target pose to align it to the target pose.
We process the warped features along with 3D target pose heatmaps with a decoder,
to synthesize the reposed image.
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9.2 Related Work

By ablation, we show the benefits of the two 3D aspects of our work: first the
3D warping, and second, representing the target pose in 3D. Overall, our method
achieves state-of-the-art scores on the commonly used DeepFashion and the newer
iPER benchmarks. Our code is publicly available to enable further research.2

9.2 Related Work
Initial Methods. Image generation methods have come a long way since the introduc-
tion of generative adversarial networks (GAN; Goodfellow et al., 2014). Building upon
Isola et al.’s (2017) image-conditioned GAN, Ma et al. (2017) were the first to tackle
pose-conditioned person image generation. Their method feeds the image and 2D
target pose heatmap through two stages: the first is trained with a pixelwise ℓ1 loss, the
second with an adversarial loss. Lakhal et al. (2018) use two encoders in both stages,
distinguishing between aligned and misaligned input in the first stage and between
pose and images in the second stage. Similar subdivisions are used in other works (Si
et al., 2018; Zhu et al., 2019).

Explicit Warping. Several approaches tackle the misalignment of the input and the
target by explicit warping. Siarohin et al. (2018) use affine transformations on the
skip connections of a U-Net architecture (Ronneberger et al., 2015). They mask out
features corresponding to the various body parts based on the input pose, and warp
these parts to align with the target pose. Horiuchi et al. (2019) propose an extension,
adding self-attention layers, spectral normalization and a relativistic discriminator to
the architecture. Balakrishnan et al. (2018) apply a similar transformation directly on
the input image, using learned soft masks.

Dense Conditioning. Some methods guide the warping based on body part segmen-
tation or use DensePose (Güler et al., 2018) to encode the input and the target poses,
instead of using keypoint representations (Dong et al., 2018; Neverova et al., 2018;
Grigorev et al., 2019). Such a fine-grained conditioning input tells the network the
exact shape of the target person, making the task simpler, but a dense target pose is
not always available.

Mesh-Based Approaches. Zanfir et al. (2018) fit a parametric 3D body mesh model
to the given person, back-project image pixels onto the mesh, then transform the mesh
to the target pose, which can be rendered to yield the final image. Unseen parts of the
texture are inpainted with a neural net. Other methods use mesh models to compute a
flow field from the input to the target pose, and use this flow to transform network
features in 2D (Li et al., 2019a; Liu et al., 2019c).

2https://vision.rwth-aachen.de/warp3d_reposing

149

https://vision.rwth-aachen.de/warp3d_reposing


9 Reposing Humans by Warping 3D Features

Volumetric Heatmaps. A line of works in 3D human pose estimation (Pavlakos
et al., 2017; Luvizon et al., 2018; Sun et al., 2018a; Sárándi et al., 2020) has shown
that it is feasible to predict depth-related information from images in a volumetric
representation (in that case volumetric body joint heatmaps), by a tensor reshaping
operation. We take this as inspiration to predict volumetric feature maps of humans in
our work.

Novel View Synthesis. Human reposing can be viewed as a generalization of novel
view synthesis (NVS) from rigid pose to articulated pose. As volumetric prediction
has also been successfully applied for NVS (Nguyen-Phuoc et al., 2019; Sitzmann et al.,
2019), we take this as further motivation to investigate the usefulness of a similar
representation in reposing.

In contrast to the volumetric approach, a sparse 3D representation is used in Rhodin
et al. (2018b) to learn NVS. Their encoder outputs an appearance feature vector and a 3D
point list representing the pose. After rotating the point cloud, the decoder transforms
the resulting point cloud and the appearance features to an image seen from the novel
view. The implicitly learned point list is then given as input to a shallow human
pose estimation network, thereby reducing the amount of labeled pose estimation
data needed. Rhodin et al.’s idea of explicitly transforming an implicitly learned 3D
structure is one of the inspirations of our work. However, instead of transforming
a list of points, which only encodes the pose, we transform rich volumetric features,
which also contain appearance information. Furthermore, we consider full articulation
instead of only rigid transformation.

Unpaired Training. Most methods for human reposing (including ours) rely on paired
training data, i.e., pairs of images depicting the same person two different poses.
However, we note that some approaches can learn the reposing task from unpaired
images as well. Pumarola et al. (2018) use a CycleGAN (Zhu et al., 2017) framework for
this, Esser et al. (2018) use variational autoencoders, while Ma et al. (2018) construct
disentangled streams for background, body parts and pose. These research directions
are orthogonal to our goal in this chapter, which is to investigate the value in volumetric
3D representations over 2D ones in this task.

9.3 Method
Given an input image Iin of a person and a target pose Ptarg, we aim at generating an
image Îgen of the same person in pose Ptarg. We use a two-stream generator network
to tackle this problem, where the first stream reposes the person using our novel
volumetric feature warping approach, while the second stream inpaints missing parts
of the background. To perform volumetric warping, the model first needs to estimate
the depths of different body parts, such that it can then lift the corresponding features
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9.3 Method
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Figure 9.2: A detailed look at our image generation architecture. The foreground
stream produces a 3D voxel grid of features from a 2D image and applies 3D feature
warping. The warped features are combined with the target pose and projected
to an RGBA image through a decoder module. Alpha blending with an inpainted
background yields the final output.

into to a 3D volume. Our model learns this volumetric feature generation and depth
estimation implicitly. We neither give depth information about the input pose to
our model, nor do we apply any explicit supervision with respect to the input pose.
Instead, since the generated volumetric features are explicitly warped during training,
the model learns to place relevant features at each position in the volume, in order to
have them shuttled to the correct place in the result. In this, we make use of the fact
that the warping module is differentiable.

9.3.1 Architecture

Our architecture consists of a lifting encoder, a 3D warping module, a projection
decoder and a background inpainter, as shown in Figure 9.2.

The lifting encoder maps a 2D input image to 3D volumetric features. The 2D
input image Iin is passed to a convolutional network E2D which outputs 2D feature
maps E2D(Iin) ∈ RH×W×D·C . A reshape operation splits the channel dimension of the
resulting tensor into different depth layers, yielding the feature volumeF ∈ RH×W×D×C .
This is similar to how joint heatmaps are estimated in Pavlakos et al. (2017), but instead
of heatmaps, we produce a latent feature volume. E2D thus learns that different features
in its output belong to different depths. To further process these volumetric features, a
3D convolutional network (E3D) is applied to yield V ∈ RH×W×D×C .
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9 Reposing Humans by Warping 3D Features

The key element of our approach is our novel 3D warping module, whose purpose
is to shuttle voxel features to their target location. The warping module gets a feature
volume V ∈ RH×W×D×C , together with the 3D input and target poses Pin, Ptarg ∈ RJ×3

which are given as 3D joint coordinates. The input pose Pin is used to create ten masks
Mi ∈ {0, 1}H×W×D, one per body part. Masks are generated by drawing capsular
shapes (cylinder capped with two half spheres) between the joints corresponding
to that body part. E.g., the lower left leg’s mask is based on the left ankle and the
left knee joints and the mask of the torso depends on the hips and shoulders. We
then create ten copies Vi of the feature volume and apply the corresponding mask
by voxelwise multiplication, giving us ten volumes, again one per body part. Next,
we fit a transformation Ti for each body part based on input and target joints. We
assume that each part moves rigidly, but as the scale of the person in pixel space may
change, we also add a scaling parameter. The result is a seven-parameter Helmert
transformation, which we estimate by least squares. When a body part has only two
joints, as for leg and arm parts, we use a third joint to specify the rotation around the
body part’s own axis. For example, the left lower arm’s movement would otherwise
only depend on the left wrist and the left elbow, which alone do not determine a unique
Helmert transformation. We therefore additionally use the left shoulder’s position as
an anchor. The masked body part features are then warped according to the respective
transformation with trilinear interpolation and the warped features are combined by
taking the maximum value across the ten body parts. Given Mi and Ti, the output
feature volume of the warping module is

V ′ = max
i

Ti(Mi ⊙ V ). (9.1)

The target pose encoder Epose feeds the target pose into our model. Its inputs are
Gaussian volumetric heatmaps H ∈ RH×W×D×J , one per body joint. Its output is
concatenated with the warped volumetric features and are processed by the projection
decoder to produce the foreground result.

Mirroring the lifting encoder, our projection decoder contains two parts: D3D and
D2D. Since the warping module cuts and pastes different parts of the volumetric feature
maps to new positions, its output can contain some artifacts at the borders of body
parts or at voxels where body parts overlap. The purpose of the 3D convolutional
network D3D is to clean up and enhance these features and to combine them with the
output of the target pose encoder. The 3D feature volume is then reshaped back to 2D,
by combining the depth axis and and volumetric channel axis into a single channel
dimension using tensor reshaping. We then apply the second decoder network D2D,
which yields the generated foreground RGB image ÎFG together with a soft mask M̂FG.

We apply a background inpainter stream, since our warping module only copies
masked body parts to the decoder, thus losing background information. We first
remove the foreground person from the inpainter module’s input, based on the body
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part masks as given in our warping module. Pixels that are not included in any of the
projected body part masks become part of the background mask MBG. The inpainting
itself is performed using partial convolutional layers (PartialConv; Liu et al., 2018). The
final result is a weighted combination (alpha blending) of the inpainted background
ÎBG and the generated person ÎFG using M̂FG as the weights.

Architectural Details. All our subnetworks, except the background inpainter, but
including the discriminator, are based on the ResNet architecture (He et al., 2016a,b).
We use GroupNorm (Wu & He, 2018) instead of BatchNorm (Ioffe & Szegedy, 2015) due
to its better performance with small batch sizes (our batch size is only 2, due to memory
costs). In E2D and D2D, we use bottleneck residual blocks to reduce computational cost.
Our 3D convolutional networks E3D, D3D and Epose do not use bottlenecks, because the
number of features is already comparatively low.

9.3.2 Training
We use two losses, a perceptual and an adversarial one. The perceptual loss Lperc (John-
son et al., 2016) compares the generated image with the target image, by passing
both through an ImageNet-pretrained VGGNet (Simonyan & Zisserman, 2015), and
computing the ℓ1 distance on multiple feature maps. The adversarial loss Ladv uses
a discriminator network as in any GAN. Our discriminator takes as input either the
generated or the ground-truth target image, along with the source image and the
3D target heatmap and performs a real vs. fake classification. We jointly optimize a
weighted combination of these two losses:

L = λpercLperc + λadvLadv. (9.2)

We use data augmentation with rotation, scaling, translation, horizontal flip and color
distortion. We train with the Adam optimizer (Kingma & Ba, 2015) for 150 000 steps
with batch size 2 and learning rate 2 × 10−4. We empirically set λadv = 1 and λperc = 3.

9.4 Experiments

9.4.1 Datasets
Commonly used in related work, the In-shop Clothes Retrieval Benchmark of the
DeepFashion dataset (Fashion; Liu et al., 2016) has almost 50 000 images and 8000 sets
of clothes.

The newer Impersonator dataset (iPER; Liu et al., 2019c) contains videos of 30 people
and 103 clothing styles in total. The dataset provides two videos per clothing style,
filmed from a static camera. In one video, the person turns around in an A-pose, the
other one shows more complex, unconstrained movements.
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As these benchmark datasets do not supply 3D poses, we generate the input and
target poses Pin and Ptarg using our MeTRAbs 3D human pose estimator from Chapter 7.
This particular model has a ResNet-152V2 backbone and we train it on Human3.6M,
MPI-INF-3DHP, CMU-Panoptic and 3DPW for 3D supervision, as well as on COCO
and MPII for 2D supervision.

9.4.2 Evaluation Metrics
Generated image quality is somewhat subjective, and therefore several quantitative
metrics have been used in related work to compare methods.

SSIM. The structural similarity index (SSIM; Wang et al., 2004) compares patches of
the generated image to patches of the ground truth according to luminance, contrast
and structure.

Inception Score. While many related works in person reposing evaluate their ap-
proach using the Inception Score (IS; Salimans et al., 2016), we argue that the IS is not
appropriate for this task. The IS was originally proposed for evaluating unconditioned
GANs whose output distribution is supposed to cover diverse classes, e.g., all ImageNet
classes. The IS combines two aspects, the realism of individual output images and the
diversity of a large set of generated images. To compute the IS, the result image is first
passed through the Inception network (Szegedy et al., 2016). If the generated image x
is realistic, it should be confidently assigned to a single class the Inception network, so
the output class y’s posterior distribution p(y | x) should have a prominent peak. At
the same time, an unconditioned GAN should cover many classes in its generations,
therefore the marginal p(y) should be rather uniform. In other words, p(y | x) and p(y)
should be different for a good unconditioned GAN. The IS is the Kullback–Leibler
divergence of these two distributions, meaning that the score is high if the distributions
are dissimilar and therefore the GAN is working well. However, in the case of human
reposing, we only have one output class: person. Therefore, p(y) and p(y | x) should be
the same distribution, the Inception network should classify every generated image as
a person. This makes the use of the IS for this task invalid and we therefore do not
report it. The use of the IS can also be misleading in other contexts, as noted in Barratt
and Sharma (2018).

LPIPS. We further use the learned perceptual image patch similarity (LPIPS; Zhang
et al., 2018), which compares deep features between generated image and ground truth,
similar to perceptual losses (Johnson et al., 2016).

Pose AUC. To evaluate high-level structure as opposed to low-level texture quality,
we compare the response of a pretrained MeTRo 3D pose estimator as described in
Chapter 6, when applied to the generated and the true image. This evaluator model
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3D warping 3D target pose SSIM ↑ SSIMfg ↑ Pose AUC ↑
– – 0.872 0.566 0.698
– ✓ 0.875 0.578 0.749
✓ – 0.877 0.607 0.749
✓ ✓ 0.883 0.626 0.777

Table 9.1: Ablation study on iPER. SSIMfg is masked to evaluate only the foreground
pixels.

has a ResNet-50V2 backbone and is pretrained on the iPER 3D pseudo–ground truth,
which we originally obtained with the MeTRAbs model described in Section 9.4.1 on
page 153, as well as COCO and MPII for 2D supervision.

We use the area under the PCK (percentage of correct keypoints) curve
(AUC@150 mm), a standard pose metric (Mehta et al., 2017a).

9.4.3 Ablation Study
In contrast to prior work on person reposing, we propose to perform two different
aspects in 3D: first, we use a 3D target pose and second, we perform 3D feature warping
in the center of our model. Architectural differences make it hard to directly compare
our results to prior works, so we define ablation models to investigate these two aspects
while keeping the exact same architecture otherwise.

To drop the depth information from the 3D target pose heatmaps, we project the
pose to the image plane and replicate it to all depth layers. Similarly, to perform
warping only in 2D, we project the body part masks to the image plane and copy them
to all depths and apply 2D affine warping to all depths independently.

The results on iPER are shown in Table 9.1. Both of our 3D enhancements improve
the scores compared to the 2D baseline, and the results get even better when the two
3D aspects are combined. The qualitative results shown in Figure 9.4 on page 157
further support this observation. In the first row, the 2D pose models wrongly generate
the right hand in front of the body, while the second row shows that a combination of
both 3D aspects achieves the best results.

9.4.4 Comparison to Prior Work
Quantitatively, our model achieves state-of-the-art scores on both iPER and Fashion, as
shown in Table 9.2.

Figure 9.3 presents a qualitative example on Fashion. Our model generates the
overlapping arms of the right person better than the 2D feature warping approach
of Siarohin et al. (2018). A qualitative comparison to Liu et al. (2019c) on iPER is
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iPER Fashion
SSIM ↑ LPIPS ↓ SSIM ↑ LPIPS ↓

PG2 (Ma et al., 2017) 0.854 0.135 0.762 –
SHUP (Balakrishnan et al., 2018) 0.823 0.099 – –
DSC (Siarohin et al., 2018) 0.829 0.129 0.756 –
LWB (Liu et al., 2019c) 0.840 0.087 – –
SGW (Dong et al., 2018) – – 0.793 –
UPIS (Pumarola et al., 2018) – – 0.747 –
VUNET (Esser et al., 2018) – – 0.786 0.196
BodyROI7 (Ma et al., 2018) – – 0.614 –
DPT (Neverova et al., 2018) – – 0.796 –
CTI (Grigorev et al., 2019) – – 0.791 0.169
Li et al. (2019a) – – 0.778 –

Ours 0.863‡ 0.077‡ 0.800 0.186

Table 9.2: Comparison to prior work. iPER scores for competing methods are taken
from Liu et al. (2019c).

Input
image

Target
pose DSC Ours Input

image
Target
pose DSC Ours

Figure 9.3: Comparison with Siarohin et al.’s (2018) 2D feature-warping method using
deformable skip connections. (Note that the target image is only used for visualization
here, it not used as input to the networks, only the pose.)

presented in Figure 9.4, showing that our model is able to transform the features of the
left arm independently from the body features. In the upper row the hand correctly
appears behind the body and the blue jacket in the lower row does not have a white
stain as residue from the arm color. Further qualitative comparisons can be found in
Figures 9.5 to 9.7 on pages 158–160.

‡Compared to our published work in Knoche et al. (2020), the scores here have been updated after Liu
et al. (2019c) shared their detailed evaluation protocol with us. Our originally published results,
using our own split, were 0.883 for SSIM and 0.081 for LPIPS.
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Figure 9.4: Comparison to the mesh-based method using the Liquid Warping Block
(LWB; Liu et al., 2019c), as well as to our ablation baseline models.

Limitations. As seen in these results, a downside of our approach is that certain fine
details are lost in some cases. For example, the buttons on the shirt in the first row
of Figure 9.4 are missing in two ablation models and replaced by a zipper and shirt
pockets in the other two. This is likely because our architecture produces low-resolution
feature maps internally.

9.5 Conclusion
We presented a novel architecture for person reposing, which relies on 3D warping
of implicitly learned volumetric features. Different from prior work, our approach is
neither limited by approximating 3D motion with 2D transformations nor is an explicit
3D human mesh model required.

The ablation study and the comparison to related approaches showed that our
method outperforms 2D warping methods by a significant margin. This indicates that
volumetric representations and 3D warping are a promising way to tackle reposing. In
the broader context of the thesis, it also demonstrates that rich appearance features
can be learned in a structurally similar way to volumetric pose heatmaps.
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Input image Target pose LWB 2D 3D pose 3D warp 3D both

Figure 9.5: Qualitative comparison between Liu et al.’s (2019c) LWB and our main and
ablation models.
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Input image Target pose LWB 2D 3D pose 3D warp 3D both

Figure 9.6: Qualitative comparison between Liu et al.’s (2019c) LWB and our main and
ablation models.
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Input image Target pose LWB 2D 3D pose 3D warp 3D both

Figure 9.7: Qualitative comparison between Liu et al.’s (2019c) LWB and our main and
ablation models.
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10
Conclusion

In this thesis, we have presented several novel approaches for improving the state of
the art in 3D human pose estimation. To conclude the thesis, we now summarize our
contributions presented in the technical chapters, and discuss exciting open challenges
for this field as well as potential future research directions to tackle them.

10.1 Summary and Contributions

After introducing related work and fundamentals in Chapters 2 and 3, we described
our study of the occlusion robustness of 3D human pose estimation in Chapter 4.
Through detailed experiments on the Human3.6M benchmark, we found out that the
shape of the occluder object matters. We analyzed the effects of occluding with a
single rectangle, several rectangles, circles, oriented bars and realistically segmented
objects. Out of these, rectangles turned out to be the least problematic, even though
prior occlusion research (in other tasks) typically used rectangles for this purpose. On
the other hand, circular occluders were most detrimental. To mitigate the issue, we
proposed to apply occlusion augmentation on the images during training. Here, we
saw that augmenting with simple geometric shapes did very little to increase robustness
against realistic occlusions at test time. In contrast, augmentation by pasting complex
objects over the image was much more versatile and generalized to all 5 occlusion
types, both realistic and simple geometric ones. We have also noted that synthetic
occlusion augmentation with realistic segmented objects improved prediction quality
also on non-occluded test images. This can be explained as a regularization effect
similar to dropout. Making use of this observation, we presented a case study in
Chapter 5, adapting our approach to the ECCV 2018 PoseTrack Challenge, where it
achieved first place.

Then, in Chapter 6, we introduced our metric-scale truncation-robust (MeTRo)
volumetric heatmap representation for 3D pose estimation. By defining the heatmap
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space at a fixed metric size, we decoupled it from the input image space, which
resulted in both truncation robustness and learnable scale recovery. This stands in
contrast to typical 2.5D heatmap methods that tie two axes to the image space, and
do not learn scale recovery. Our representation allowed for a similar flexibility to
direct coordinate regression methods, while keeping the structural benefits of heatmap
estimation, i.e., encoding positions via high-activation locations, instead of activation
values. We confirmed the effectiveness of the method by comparing it to a typical
2.5D heatmap baseline and by achieving state-of-the-art scores on Human3.6M and
MPI-INF-3DHP. We also introduced the centered striding mechanism to allow an
even distribution of the receptive fields of the last-layer units across the image, instead
of a top-left bias. This allowed us to dynamically change the striding to different
values at test time compared to the training configuration. We further verified that
the occlusion augmentation remained effective in our new approach, on both datasets,
and performed experiments to disentangle the effects of the irregular outlines and the
realistic textures of synthetic occlusions.

In Chapter 7, we then extended the MeTRo approach with a 2D heatmap branch
and a differentiable absolute pose reconstruction module. This allowed us to make
predictions in the camera-relative 3D space, and to train the network end-to-end with
an absolute pose loss. We kept architectural simplicity as a key priority in our design,
and used a simple backbone network without any high-resolution decoder at the end.
Instead, we showed that soft-argmax enables high-quality output even at a low (8×8×8)
heatmap resolution. With this approach, we outperformed the prior state of the art on
the MuPoTS-3D benchmark and also won the 3DPW Challenge at ECCV 2020. From
the perspective of efficiency, we also evaluated our method on low-powered embedded
hardware and found it to be capable of real-time performance.

Next, in Chapter 8, we presented our contributions to multi-dataset learning of 3D
pose estimation. We called attention to the often overlooked problem of different
skeleton formats used across datasets. To address the problem, we proposed a
geometric autoencoding method for discovering the relations and redundancies among
the different skeleton formats. For this, we first had to assemble a pseudolabeled
parallel corpus of examples annotated with every skeleton format. We then used the
pseudo–ground truth to train our novel affine-combining autoencoder to discover
latent 3D keypoints in its information bottleneck. Since we defined both the encoder
and the decoder to perform simple affine combinations, the whole architecture is
equivariant to rotation and translation. This has the benefit that the skeletal relations
observed in the 2D image plane can be transferred to the more challenging depth axis.
With this approach, we trained high-quality models on 28 3D datasets simultaneously,
a much larger scale than prior experiments. We demonstrated improved results with
our autoencoder-based regularization compared to baselines. We further showed that
it is also possible to directly predict the latent keypoints, for cases when the prediction
of a large set of keypoints would be too computationally expensive.
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Finally, in Chapter 9, we presented our work on the image-generation task of human
reposing. Our main inspiration for this research was the success of volumetric heatmap
prediction in 3D human pose estimation. Hence, we formulated reposing as volumetric
feature prediction, piecewise affine warping and feature decoding. While typical prior
work operated using 2D image features (or parametric meshes), we showed that a
volumetric 3D representation can be very effective for learning reposing. We used 3D
representations in two ways in this work. First, we replaced 2D feature prediction
and warping with volumetric 3D features and warping; second, we replaced the 2D
heatmap representation of the target pose with 3D volumetric heatmaps. Both of
these contributions were found effective over the corresponding baselines, and our full
approach achieved state-of-the-art quantitative scores on the DeepFashion and iPER
benchmarks.

Overall, with these approaches we have made significant contributions to improve
the state of the art in 3D human pose estimation.

10.2 Perspectives

While improvements in visual human analysis have been impressive in recent years—
to which we hope to have contributed with the approaches described above—many
limitations and open challenges remain. Perceptual tasks, such as human pose
estimation should be more tightly integrated with higher-level reasoning, “common
sense” priors, world knowledge and physical constraints. Such top-down influences
can help disambiguate poses, to reconstruct plausible actions and to forecast possible
next actions. Long-term progress will probably require better modeling of various
contextual cues, intentions and goals, object affordances and functionality, implicit
social knowledge, as well as exploiting knowledge learned from other modalities such
as language and audio. In the following, we discuss some more specific exciting future
research possibilities and emerging directions.

Humans in Context. Most current approaches in human analysis focus on the human
and consider everything else a distraction. However, in many cases hand-held objects,
furniture and other scene components are crucial for interpreting what the person is
doing or how they can be assisted by e.g., a robot. Context cues can also help resolve
ambiguities, e.g., the scene layout can constrain the absolute poses. This needs to be
flexible enough, without overly strong assumptions such as the presence of a single
ground plane.

Joint scene–human reconstruction has already started to emerge as an important area
of research, with promising initial approaches (e.g., Huang et al., 2022). A challenge
for the coming years will be to generalize such approaches to arbitrary objects and
environments.
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Uncertainty and Probabilistic Modeling. Advances of the last decade have been
largely fueled by strong representations learned via deep learning. However, while
deep learning yields impressive results in aggregate and on average, it can also fail
unexpectedly, and automatically detecting when this happens is challenging. Modeling
uncertainties will therefore be an important topic of future research. This includes
out-of-distribution detection (i.e., “I don’t know” answers), uncertainty quantification,
or full-scale modeling of the complex multi-modal predictive probability distribution.
Research on the conformal calibration of neural networks is promising in this regard,
and could also be applied to calibrating (volumetric) heatmaps in a conformal sense.
Normalizing flows have recently been introduced for modeling complicated, multi-
modal probability distributions, and some initial studies have applied them for 3D
human pose estimation as well. We expect such approaches to become more common.

Complex Interactions. While multi-person pose estimation has made much progress,
close human-to-human interactions (e.g., dancing, hugging, wrestling) are still chal-
lenging to model due to occlusions and complex interdependencies. Methods are
currently constrained by the lack of training and test data in this regard. Current
large-scale multi-person 3D pose datasets, such as CMU-Panoptic (Joo et al., 2019),
contain little physical interaction. Action recognition datasets like NTU-RGB+D (Liu
et al., 2019b) or PKU-MMD (Liu et al., 2017) do depict a few types of interactions like
hugging or pushing, but the clips are relatively simple, with Kinect-based reference
poses of limited accuracy. The recent CHI3D (Fieraru et al., 2020) has more kinds of
interactions, and could bring more focus to interaction modeling.

A second limitation of current interaction datasets is their scripted nature, consisting
of short disconnected clips. Learning from longer, unscripted interactions could pave
the way towards more socially aware AI.

Forecasting with a Theory of Mind. A key reason for performing human pose esti-
mation in the first place is that poses contain cues about what the person is doing
and intends to do. Current pose forecasting methods typically only work well on a
time horizon of about one second, where extrapolation based on inertia is sufficient.
On longer time horizons, it is crucial to model people as goal-oriented agents, i.e.,
the forecasting system requires a theory of mind. Discovery of plausible goals in
unstructured novel environments (e.g., based on gestures, gaze and “common sense”)
will be important for helpful collaborative robots.

Perspectives in Data Collection. Many recent successes in AI have relied on ingesting
Internet-scale uncurated data and performing some form of self- or unsupervised
training. We have seen in Chapter 8 that data scale is also important for 3D human
pose estimation quality. Further research along this path could make use of orders
of magnitude more unlabeled data collected from e.g., movies or YouTube, where
rare poses and clothing can also be observed (e.g., extreme sports, contortion, yoga),
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which are unlikely to be recorded in typical labeled datasets. We believe that a strong
initialization trained on as much labeled data as possible, as we did in Chapter 8, can
play a key role in bootstrapping such a self-supervised approach.

However, since current 3D pose estimation models are near saturation for common
poses and appearances, collecting more such “easy” data is wasteful. This may
diminish the impact of “casting a wide net” as discussed above. Instead, the data
collection process should focus specifically on covering poses and appearances where
current models struggle. Smaller-scale but well-targeted data in this manner could
help fill remaining blind spots of the models. The active learning paradigm can be
explored for this.

With the rise of more and more realistic real-time rendering engines, synthetic data
generation will also remain an important way to scale the available data.

Continual Learning. The strict separation into a training phase and an inference
phase is artificial and very unlike how natural learning happens. Its necessity today
is largely a consequence of the much higher computational cost of training updates
compared to forward passes in inference. Ideally, future methods would allow robots
to self-supervise themselves on post-deployment experiences, adapting their models
to new environments, new people and actions over time. Recent research results on
continual learning could be integrated into 3D human understanding to explore this
aspect.

Task Fusions. Computer vision tasks are often tackled and evaluated separately, in
isolation, although they need to be solved jointly in practical applications. However,
multi-task learning has been a growing research topic as deep learning provides a
common foundation for most vision tasks. Still, in many cases, innovations in one task
(or research community) can take a long time to find adoption in others. For example,
segmentation-based tracking has made quick progress recently, and the underlying
ideas can be also applicable to 3D pose tracking.

We also observe that body mesh estimation methods and keypoint-based traditional
3D pose estimation have started to converge and more synergies could be exploited in
this direction.

Furthermore, while we handled human pose estimation (Chapters 4 and 8) and
reposing (Chapter 9) separately, there are further potential interactions to be exploited
in the analysis-by-synthesis paradigm. Human pose estimation, reposing and motion
modeling could all play important roles in self-supervisory cognitive loops (cf. Gong
et al., 2022). E.g., when human pose estimation is uncertain, motion models could
generate plausible continuations, which can in turn be rendered with a reposing model
for comparison with the input image. When single-frame human pose estimation is
certain, the motion model can be updated to learn about a potentially novel movement
pattern, which can be recalled and used later when the image happens to be noisier,

165



10 Conclusion

and so on. The recent quality improvements in image-generation methods (diffusion
models, NeRFs) could further motivate such research directions.

Dynamic Level of Detail. The right level of human representation (e.g., point, box,
skeleton, body model, textured and clothed mesh, etc.) is task-dependent. In the
current paradigm, we need to choose it at the time of model design. However, for a
goal-oriented intelligent agent with constraints on compute, this is not ideal. Ideally,
the agent could pay more detailed and fine-grained attention to people (and objects)
who are nearby or relevant for other reasons. Meanwhile, more distant people, or
people already walking away from the robot can probably be represented in less detail.
This will become increasingly relevant if low-powered mobile robots become more
widely adopted in dense crowds and urban environments.

Impact of Wider Trends. The development of the Vision Transformer (ViT) has inspired
researchers to tackle various vision tasks with Transformers as well, including human
pose estimation. It is currently unclear whether ViTs have substantial advantages
over CNNs as feature-extractor backbones, but applying Transformer layers on the
extracted features has been a fruitful line of recent research.

Most recently, following their sweeping success in image generation, diffusion
models have started to see applications in human motion modeling, as well as human
pose estimation, but it is not possible to say yet if this will result in more widespread
adoption.

Another recent success story has been the merging vision models with language
models (as in CLIP). We can therefore also expect more use of language in human-
related vision tasks as well.

∗
∗ ∗
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